Abstract:
A rotary kiln includes a stationary fuel nozzle and a perforated flame holder positioned within an inclined rotating shell. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder to shift most heat transfer from the combustion reaction from radiation heat transfer to convective heat transfer.
Abstract:
A combustion system such as a furnace or boiler includes a perforated reaction holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).
Abstract:
In an embodiment, a combustion system includes a burner, at least one charging electrode, flame anchoring electrode(s), and at least one voltage power supply. The burner is configured to discharge fuel into a combustion volume in which the fuel and an oxidizer are ignited to generate a flame. The charging electrode is positioned proximate to the flame. The charging electrode provides charges to the flame to generate a charged flame. The flame anchoring electrode(s) are disposed adjacent to the burner and proximate to a base portion of the charged flame. The voltage power supply is electrically coupled to each of the flame anchoring electrode(s) and the charging electrode. The at least one voltage power supply applies one or more electrical potentials to each of the flame anchoring electrode(s) so that the charged flame is anchored at a predetermined location.
Abstract:
A combustion system includes a perforated flame holder positioned within a combustion volume, a nozzle configured to emit a fuel stream toward the perforated flame holder, an oxidant source configured to introduce an oxidizer fluid into the combustion volume, and a flue gas recirculation (FGR) channel having a first end in fluid communication with the combustion volume downstream of the perforated flame holder and a second end in fluid communication with the oxidant source. A controller is configured to hold a combustion parameter within a selected range of values by regulating a quantity of flue gas flowing in the FGR channel.
Abstract:
A method of operation of a burner system includes introducing a fuel stream into a perforated flame holder, combusting the fuel stream, with a majority of the combustion occurring between an input face and an output face of the flame holder, and producing a heat output from the combustion of at least 1.5 kBTU/H/in2.
Abstract translation:燃烧器系统的操作方法包括将燃料流引入穿孔火焰保持器中,燃烧燃料流,大部分燃烧发生在火焰保持器的输入面和输出面之间,并产生从 燃烧至少1.5 kBTU / H / in2。
Abstract:
According to embodiments, a co-fired or multiple fuel combustion system is configured to apply an electric field to a combustion region corresponding to a second fuel that normally suffers from poor combustion and/or high sooting. Application of an AC voltage to the combustion region was found to increase the extent of combustion and significantly reduce soot evolved from the second fuel.
Abstract:
A duct burner includes a perforated flame holder and a fuel header that is spaced away from the perforated flame holder and has a plurality of fuel nozzles. Each of the fuel nozzles is arranged to emit a fuel stream toward a respective portion of the perforated flame holder. A combustion reaction supported by the fuel streams is held within a plurality of apertures extending through the perforated flame holder.
Abstract:
A system is configured to apply a voltage, charge, and/or an electric field to a combustion reaction responsive to acoustic feedback from the combustion reaction.
Abstract:
An oscillating combustor can support a time-sequenced combustion reaction having rich and lean phases by applying a variable voltage charge to a fuel stream or flame that flows adjacent to a conductive or semiconductive flame holder held in electrical continuity with an activation voltage.
Abstract:
A solid fuel burner may include a system for electrodynamic homogenization. One or more electrodes may apply an electric field to burning solid fuel or a region proximate the burning solid fuel. The electric field causes mixing and homogenization of volatilized fractions of the solid fuel, combustion gases, and air. The improved mixing and homogenization may reduce emission of carbon monoxide (CO), reduce emission of oxides of nitrogen (NOx), reduce oxygen in flue gas, increase temperature of flue gas, and/or allow for a larger grate surface.