Abstract:
A readout device for a capacitive sense matrix includes a computer readable storage medium configured to store capacitance data. The capacitance data represents capacitance values of the capacitive sense matrix. The readout device also includes a readout circuit configured to receive a signal from the capacitive sense matrix, the readout circuit being configured based upon the capacitance data. Also described are a readout method and a method of compensating for variations in capacitance.
Abstract:
An in-cell touchscreen panel includes columns of transmit electrodes and rows of sensing electrodes, wherein each row of sensing electrodes comprises a first subset of sensing electrodes coupled to control circuitry via a first subset of receiving traces and a second subset of sensing electrodes coupled to the control circuitry via a second subset of receiving traces. To enable multi-touch functionality, the in-cell touchscreen panel operates in a scanning mode where capacitance is measured at each node where the sensing electrodes intersect the transmit electrodes. During the scanning mode, the control circuitry senses the first and second subsets of receiving traces while applying drive signals to pairs of transmit electrodes. After a drive signal has been applied to each of the transmit electrodes, each of the nodes are measured to detect a capacitance. This capacitance is indicative of a user touch on the in-cell touchscreen panel.
Abstract:
Accumulators that operate to fully or partially remove noise from a signal, including removing noise inserted into the signal by the accumulator itself. In some embodiments, an accumulator may be operated in a sampling phase and a transfer phase each time the accumulator samples an input signal. In some such embodiments, an op-amp of an accumulation circuit of the accumulator may be auto-zeroed during some or all of the sampling phases of an accumulation period. In some embodiments in which the op-amp is auto-zeroed during some or all of the sampling phases, the accumulation circuit may include a holding capacitor that, during an auto-zeroing process, holds a value output by the op-amp during a prior transfer phase. Including such a holding capacitor in an accumulator may reduce a voltage that the op-amp output rises following the auto-zero process, which may reduce a bandwidth and noise of the accumulation circuit.
Abstract:
A touch panel includes a plurality of drive lines, a plurality of orthogonal sense lines, and a plurality of sensors. A method of controlling the touch panel to detect touches includes simultaneously applying a drive signal to each of a group of drive lines of the touch panel. Each of the drive signals is applied to a corresponding drive line in the group during a time slot and all the applied drive signals having the same electrical characteristics over the time slot. The method includes sensing sense signals generated on the sense lines in response to the applied drive signals and processing the sense signals to detect touches of the touch panel.
Abstract:
An integrated circuit is provided having an active circuit. A heating element is adjacent to the active circuit and configured to heat the active circuit. A temperature sensor is also adjacent to the active circuit and configured to measure a temperature of the active circuit. A temperature controller is coupled to the active circuit and configured to receive a temperature signal from the temperature sensor. The temperature controller operates the heating element to heat the active circuit to maintain the temperature of the active circuit in a selected temperature range.
Abstract:
An image sensor device may include a bottom interconnect layer, an image sensing IC above the bottom interconnect layer and coupled thereto, and an adhesive material on the image sensing IC. The image sensor device may include an IR filter layer above the lens layer, and an encapsulation material on the bottom interconnect layer and surrounding the image sensing IC, the lens layer, and the IR filter layer. The image sensor device may include a top contact layer above the encapsulation material and including a dielectric layer, and a contact thereon, the dielectric layer being flush with adjacent portions of the IR filter layer.
Abstract:
A method and apparatus are provided for filtering banding noise in a signal representative of an image. The method includes detecting, by a banding noise detector, banding noise in a neighborhood of a current pixel of the image, determining, by an adaptive filter weight decision unit, a number of banding steps in the neighborhood of the current pixel, determining, by the adaptive filter weight decision unit, a difference between a current pixel value and a previous output value, selecting, by the adaptive filter weight decision unit, a filter weight based on the number of banding steps, the difference between the current pixel value and the previous output value, and the detected banding noise, and filtering, by a recursive filter, the current pixel value according to the selected filter weight.
Abstract:
An integrated circuit is provided having an active circuit. A heating element is adjacent to the active circuit and configured to heat the active circuit. A temperature sensor is also adjacent to the active circuit and configured to measure a temperature of the active circuit. A temperature controller is coupled to the active circuit and configured to receive a temperature signal from the temperature sensor. The temperature controller operates the heating element to heat the active circuit to maintain the temperature of the active circuit in a selected temperature range.
Abstract:
A method of making image sensor devices may include forming a sensor layer including image sensor ICs in an encapsulation material, bonding a spacer layer to the sensor layer, the spacer layer having openings therein and aligned with the image sensor ICs, and bonding a lens layer to the spacer layer, the lens layer including lens in an encapsulation material and aligned with the openings and the image sensor ICs. The method may also include dicing the bonded-together sensor, spacer and lens layers to provide the image sensor devices. Helpfully, the method may use WLP to enhance production.
Abstract:
Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a dual mode switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitance-to-voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.