P-Metal Gate First Gate Replacement Process for Multigate Devices

    公开(公告)号:US20220359725A1

    公开(公告)日:2022-11-10

    申请号:US17874031

    申请日:2022-07-26

    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming a gate dielectric layer around first channel layers in a p-type gate region and around second channel layers in an n-type gate region. Sacrificial features are formed between the second channel layers in the n-type gate region. A p-type work function layer is formed over the gate dielectric layer in the p-type gate region and the n-type gate region. After removing the p-type work function layer from the n-type gate region, the sacrificial features are removed from between the second channel layers in the n-type gate region. An n-type work function layer is formed over the gate dielectric layer in the n-type gate region. A metal fill layer is formed over the p-type work function layer in the p-type gate region and the n-type work function layer in the n-type gate region.

    SEMICONDUCTOR DEVICES WITH BACKSIDE CONTACTS AND ISOLATION

    公开(公告)号:US20220359519A1

    公开(公告)日:2022-11-10

    申请号:US17873858

    申请日:2022-07-26

    Abstract: A semiconductor structure includes an isolation structure, a source or drain region over the isolation structure, a channel layer connecting to the source or drain region, a gate structure over the isolation structure and engaging the channel layer, an isolating layer below the channel layer and the gate structure, a dielectric cap below the isolating layer, and a contact structure having a first portion and a second portion. The first portion of the contact structure extends through the isolation structure, and the second portion of the contact structure extends from the first portion of the contact structure, through the dielectric cap and the isolating layer, and to the source or drain region. The first portion of the contact structure is below the second portion and wider than the second portion.

    Dual side contact structures in semiconductor devices

    公开(公告)号:US11482595B1

    公开(公告)日:2022-10-25

    申请号:US17238983

    申请日:2021-04-23

    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.

    FINFET SRAM CELLS WITH REDUCED FIN PITCH

    公开(公告)号:US20220336472A1

    公开(公告)日:2022-10-20

    申请号:US17810673

    申请日:2022-07-05

    Abstract: An integrated circuit (IC) includes a first p-type semiconductor fin, a first dielectric fin, a first hybrid fin, a second hybrid fin, a second dielectric fin, and a second p-type semiconductor fin disposed in this order along a first direction and oriented lengthwise along a second direction, where each of the first and the second hybrid fins has a first portion including an n-type semiconductor material and a second portion including a dielectric material. The IC further includes n-type source/drain (S/D) epitaxial features disposed over each of the first and the second p-type semiconductor fins, p-type S/D epitaxial features disposed over the first portion of each of the first and the second hybrid fins, and S/D contacts physically contacting each of the p-type S/D epitaxial features and the second portion of each of the first and the second hybrid fins.

Patent Agency Ranking