Abstract:
A metal matrix composite (MMC) material that is castable, or can be rendered castable, is melted and cast into a mold or crucible, and at least a portion of the plurality of reinforcement bodies is permitted to at least partially settle out of their suspension in the molten matrix metal. The casting is solidified, and the sparsely loaded supernatant is separated from the zone of the casting containing the sediment—either by cutting, sawing, etc., or by decanting the supernatant when the casting was still in a molten condition. In a preferred embodiment, during the settling and/or the solidification process, mechanical energy, such as in the form of oscillations, is applied to the MMC melt. The applied energy permits the reinforcement bodies to nestle and pack more efficiently, thereby increasing their volumetric loading in the cast composite.
Abstract:
The present invention relates to particle reinforced noble metal matrix composites and a method of making the same. The composites include a noble metal such as silver, gold, and alloys thereof, as a base or matrix, and a particle reinforced filler material, such as a carbide. A pressureless infrared heating, or superheating, process is used to produce the particle reinforced noble metal matrix composites thereby providing a composite with at least sufficient hardness, i.e. wear resistance, and/or low resistivity. The composites may be used in the jewelry industry, such as for making watches, rings, and other jewelry, and/or in the power, automobile, and aircraft industries, such as for making electrical contact materials.
Abstract:
The present invention is a process for producing a radiator member for electronic appliances, and is characterized in that, in a process for producing a radiator member for electronic appliances, the radiator member comprising a composite material in which SiC particles are dispersed in a matrix metal whose major component is Al, it comprises a filling step of filling an SiC powder into a mold, a pre-heating step of pre-heating the mold after the filling step to a pre-heating temperature which falls in a range of from a melting point or more of said matrix metal to less than a reaction initiation temperature at which a molten metal of the matrix metal and SiC particles in the SiC powder start to react, and a pouring step of pouring the molten matrix metal whose molten-metal temperature falls in a range of from the melting point or more of the matrix metal to less than the reaction initiation temperature, into the mold after the pre-heating step, and impregnating the SiC powder with the molten metal by pressurizing.When the molten-metal temperature and the pre-heating temperature are from the melting point or more of the matrix metal to less than the reaction initiator temperature, it is possible to inhibit the generation of low thermal conductive materials while securing the impregnation of the molten metal into the SiC powder.
Abstract:
A process for casting titanium alloy based parts includes the steps of melting a quantity of titanium alloy to form a molten titanium alloy; adding to the molten titanium alloy a quantity of boron in an amount of about 0.2 weight percent to about 1.3 weight percent of the molten titanium alloy to form a molten boron modified titanium alloy; and casting a boron modified titanium alloy based part.
Abstract:
A porous composite material includes a metal material for forming a matrix, and at least two kinds of fine particle materials having different wettabilities with respect to the metal material. The porous composite material is provided by melting and impregnating the metal material for forming a matrix with the mixture of at least two kinds of fine particle materials. The porous composite material has excellent characteristics in shock absorbency, acoustics, non-combustibility, lightness, rigidity, and so forth.
Abstract:
A brake drum includes a ring-shaped drum body, and a friction member secured to the inner circumferential surface of the drum body. Because the drum body is formed of a lightweight Al alloy and the friction member is formed of an Al-base composite material, the brake drum can be reduced in weight as a whole. Further, because the friction member, having projection portions formed on its outer periphery, is cast enveloped by molten metal of the Al alloy, the friction member and the drum body can be firmly fastened together. Thus, even when a great braking force is applied to the drum brake, the friction member can be prevented from being undesirably detached from the drum body.
Abstract:
Diamond heat spreaders are produced having thermal properties approaching that of pure diamond. Diamond particles of relatively large grain size are tightly packed to maximize diamond-to-diamond contact. Subsequently, smaller diamond particles may be introduced into the interstitial voids to further increase the diamond content per volume. An interstitial material is then introduced which substantially fills the remaining voids and should have favorable thermal properties as well as form chemical bonds with the diamond. Alternatively, the packed diamond may be subjected to ultrahigh pressures over 4 GPa in the presence of a sintering aid. The resulting diamond heat spreader has diamond particles which are substantially sintered together to form a continuous diamond network and small amounts of a sintering agent. The final heat spreader exhibits superior heat transfer properties advantageous in removing heat from various sources such as electronic devices and minimized difference in thermal expansion from the heat source.
Abstract:
A composite structure includes a first portion comprising a first metallic material, a monolayer of particles extending into and bonded with the first portion, and a second portion comprising a second material, the second portion bonded with the monolayer of particles and extending into interstices between the particles. A method for fabricating a composite structure includes bonding a monolayer of particles to a first portion comprising a first metallic material, such that the monolayer of particles extends into the first portion and bonding a second portion comprising a second material to the monolayer of particles, such that the second portion extends into interstices between the particles.
Abstract:
A metal-matrix material in the form of a carbide powder together with a sodium fluoride flux is deposited as a charge within a crucible for induction heating thereof to a flux melting temperature to thereby initiate pretreatment. The molten flux is spread over and covers powder particles of the metal-matrix carbide throughout, in response to stirring by rotation of an agitator during said flux melt heating within the crucible. The charge may be covered within the crucible by an air-purging blanket of argon gas during said heating. The powder fluxed charge is then cooled within the crucible before removal therefrom and sealingly packaged within aluminum soda cans or foil wrappings for future use storage. Such packaged charges are transferred from storage and introduced into a casting mold for enhanced centrifugal cast molding of metallurgical products, such as a metallic ring having an outer carbide bronze surface.
Abstract:
A composite material includes an SiC porous ceramic sintered body, which is formed by preliminarily sintering a porous body, having a coefficient of thermal expansion lower than the coefficient of thermal expansion of copper to construct a network therein. A copper alloy impregnating the porous ceramic sintered body includes copper and one or more additive elements which are prepared to impart a coefficient of thermal conductivity of 160 W/mK or higher to the composite material. The additive elements include up to 5% of at least one element selected from Be, Al, Si, Mg, Ti, Ni, Bi, Te, Zn, Pb, Sn, and mish metal, and also contain unavoidable impurities and gas components.