Abstract:
An embodiment of an unmanned aerial vehicle, which may be connected to a lighter-than-air carrier, may have a ratio of a lifting force of the carrier to a weight of the vehicle from 1.1:1 to 3:1. The vehicle, excluding payload, may have a mass of from 30 kg to 150 kg. The vehicle may have a wingspan of from 20 m to 60 m.
Abstract:
A vertical takeoff and landing (VTOL) unmanned aircraft system (UAS) may be uniquely capable of VTOL via a folded wing design while also configured for powered flight as the wings are extended. In a powered flight regime with wings extended, the VTOL UAS may maintain controlled powered flight as a twin pusher canard design. In a zero airspeed (or near zero airspeed) nose up attitude in a VTOL flight regime with the wings folded, the unmanned aircraft system may maintain controlled flight using main engine thrust as well as vectored thrust as a vertical takeoff and landing aircraft. An airborne transition from VTOL flight regime to powered flight and vice versa may allow the VTOL UAS continuous controlled flight in each regime.
Abstract:
In one embodiment, a controller instructs an unmanned aerial vehicle (UAV) docked to a landing perch to perform a pre-flight test operation of a pre-flight test routine. The controller receives sensor data associated with the pre-flight test operation from one or more force sensors of the landing perch, in response to the UAV performing the pre-flight test operation. The controller determines whether the sensor data associated with the pre-flight test operation is within an acceptable range. The controller causes the UAV to launch from the landing perch based in part on a determination that UAV has passed the pre-flight test routine.
Abstract:
A remotely controlled UAV is disclosed. The UAV includes a parachute, with a cylindrical power and control module suspended vertically below the parachute. In one embodiment, a propulsion source is mounted on top of the power and control module with control lines connected to the module below the propulsion source, and in another embodiment the power and control module is suspended from a point above a propulsion source. The UAV may be flown under a parachute and guided by remote control, or the control module (fuselage) may be released from the parachute and extendable fixed wings deployed to enable the UAV to be flown as a fixed wing vehicle.
Abstract:
A convertiplane has the ability to take off like a helicopter and then fly horizontally like a conventional aircraft. The aircraft includes a variable incidence front wing of variable span located below the fuselage and mounted on a structure in the form of a venturi tube, a rear wing having two propellers for controlling the stability of the vehicle in pitch and roll installed therein, two counter-rotating, pivotally mounted ducted propellers equipped with four flaps orthogonal to each other provided on the sides of the cockpit, engines placed behind the cockpit close to the center of gravity, a static balancing system for controlling the center of gravity of the aircraft consisting of a weight placed in the lower part of the fuselage, self-propelled on the track rack longitudinally to the fuselage, and a digital flight control system.
Abstract:
An aircraft includes a fuselage, a wing, a ducted fan and a controller. The wing and the ducted fan are coupled to the fuselage. The controller is operable to control the aircraft in a vertical flight mode, a horizontal flight more, and transition the aircraft from the vertical flight mode to the horizontal flight mode.
Abstract:
A variable geometry inlet for a ducted fan is selectively transitionable between a first and second mode. The inlet includes a retractable ring that extends circumferentially about the inlet and is selectively movable between an axially extended position in the first mode and an axially retracted position in the second mode. A tube extends circumferentially proximate the retractable ring, and is pressurizable to a relatively deflated state in the first mode and to a relatively inflated state in the second mode. A stretchable skin extends circumferentially proximate the retractable ring, and is elastically deformable in at least a circumferential direction about a longitudinal axis of the fan. A leading edge of the inlet in the first mode is defined by the stretchable skin disposed against a forward edge of the retractable ring, and in the second mode by the stretchable skin disposed against at least a portion of the tube.
Abstract:
A method of launching a powered unmanned aerial vehicle at an altitude of at least 13,000 m, the method comprising lifting the vehicle by attachment to a lighter-than-air carrier from a substantially ground-level location to an elevated altitude, causing the vehicle to detach from the carrier while the velocity of the vehicle relative to the carrier is substantially zero, the vehicle thereafter decreasing in altitude as it accelerates to a velocity where it is capable of preventing any further descent and can begin independent sustained flight.
Abstract:
A combination rotor and wheel assembly for an unmanned vehicle with ground and aerial mobility has a rotor arm adapted to be attached at an inner end thereof to a vehicle body. A rotor is rotatably connected to an outer end of the rotor arm about a rotor axis, and a rotor drive mounted on the rotor arm rotates the rotor such that the rotor exerts an upward lift force on the rotor arm. An open spoked wheel is rotatably connected about the rotor axis independent of the rotor The diameter of the wheel is greater than that of the rotor, and a bottom edge of the wheel is below the rotor. A wheel drive rotates the wheel. Vehicles can have various numbers and orientations of the rotor and wheel assembly to provide aerial and ground mobility.
Abstract:
A portable unmanned aerial vehicle or aircraft, capable of being easily carried by a single individual by means of a mounting device, which can be fastened on a belt or strap. The aerial vehicle comprises a wing attached at one end to a fan or turbine assembly. The fan or turbine assembly may be electrically driven, with power supplied by one or more batteries. In flight, the fan or turbine assembly causes the aerial vehicle to rotate around its center-of-mass (COM), with lift provided by the wing as it rotates. A camera is located on the aircraft at or near the COM.