Abstract:
A method comprising the steps of depositing a first and second polysilicon layer, separated by an oxide layer; selectively etching the second polysilicon layer to form first gate regions; forming first substrate regions in the substrate and laterally in relation to the first gate regions; selectively etching the first polysilicon layer to form second gate regions of a length greater than the first gate regions; and forming in the substrate, laterally in relation to the second gate regions and partially overlapping the first substrate regions, second substrate regions of a higher doping level than the first substrate regions.
Abstract:
A redundancy circuitry for a semiconductor memory device comprising a matrix of memory elements and a plurality of programmable non-volatile memory registers. The non-volatile memory registers being programmable to store addresses of defective memory elements that must be replaced by redundancy memory elements. The redundancy circuitry comprises a combinatorial circuit supplied by address signals and supplying the non-volatile registers with an inhibition signal for inhibiting the selection of redundancy memory elements when a memory element of the matrix is addressed whose address coincides with the address stored in a non-programmed memory register.
Abstract:
A voltage multiplier for relatively high output current has its design output voltage stabilized and rendered independent of process spread, temperature, supply voltage and output current level, by a stabilization loop driving the switch that cyclically connects to ground a charge transfer capacitance of the functional voltage multiplier circuit. The feedback loop comprises an integrating stage, stabilized by creating a low-frequency zero in the transfer function for compensating one of two low-frequency poles of the transfer function of the whole circuit.
Abstract:
The PLA, which implements a state machine of a nonvolatile memory, presents a dynamic NAND-NOT-NOR configuration, and the timing signals for correct reading of the PLA are generated by a clock generator which generates a monostable succession of read enabling signals on receiving a predetermined switching edge of an external clock signal. The clock generator enables evaluation of the AND and OR planes of the PLA and subsequently storage of the results through sections duplicating the propagation delays of the signals in the corresponding parts of the PLA. Reading is terminated as soon as completion of the storage step is indicated, so that reading of the PLA lasts only as long as strictly necessary, thus preventing erroneous switching while at the same time ensuring correct reading of the PLA.
Abstract:
A current source including a current mirror circuit and an active load circuit which form a reference branch, for setting a reference current value, and a mirroring branch, defining an output current value, connected between supply and ground. A voltage stabilizing transistor is interposed between the current mirror circuit and the load circuit in the reference branch only, and is so biased as to maintain its gate terminal at a predetermined voltage. As such, the potential with respect to ground of the drain terminal of the reference branch load transistor is fixed, so that its drain-source voltage drop (and the current through it) is substantially independent of supply voltage. The current source may be used to advantage in an oscillator for generating the: clock signal of a nonvolatile memory.
Abstract:
A circuit for generating positive and negative boosted voltages, comprising first and second voltage booster circuits, respectively for positive and negative voltages, which have output terminals interconnected at a common node. It comprises two tristate logic gate circuits for coupling said voltage booster circuits to a positive supply voltage generator and additional tristate logic gate circuits for driving the phases of charge pump circuits incorporated into the booster circuits. This voltage generating circuit may be integrated in single-well CMOS technology.
Abstract:
A fast adder chain for adding together at least one pair of digital words and including a plurality of cascaded adder blocks. Each block having computation adders for obtaining the pseudosum of said pair of digital words and latches for storing and transmitting the pseudosum to the next block and the pseudocarry from the computation to the chain end.
Abstract:
The contrasting requirements of low power consumption during operation and ability to function under drastic drops of the supply voltage at start-up of output power stages of an electric system of self-generation and recharge of a storage battery, are satisfied by an output power driving stage composed of a bipolar transistor and a field effect transistor, functionally connected in parallel to each other and having independent control terminals. A control signal is selectably switched either to the base of the bipolar output transistor or to the gate of the field effect output transistor, depending on the level of the supply voltage. A comparator comparing the voltage present on the supply node with a reference voltage controls a selection switch. The low threshold of the bipolar transistor ensures functioning at start-up, while the field effect transistor provides a low power consumption during normal running conditions.
Abstract:
An integrated device with electrically programmable and erasable memory cells, including one time programmable (OTP) read-only memory cells. A matrix of user memory cells is added at least one row of OTP cells sharing the column selection lines with the other cells. Similarly to the other cells, these have a selection terminal connected to a row selection line. The source terminals of such OTP cells in the row are connected to the device ground through a common selection transistor which is driven from the same row selection line.
Abstract:
An anti-logarithmic type converter circuit, with temperature compensation, includes a diode connected between a unity gain, non-inverting interface circuit and a low-impedance reference voltage circuit. A thermal compensation circuit is connected between the converter input and the interface circuit. The thermal compensation circuit includes current mirror circuits having a gain higher than one and their output currents linearly dependent on temperature.