Abstract:
The invention relates to an opening and closing system for a power sliding door, which has a locking controller, a sensor, a driving device, and an ECU. The locking controller transfers driving force of a handle to a door-closed state keeping unit or a door-open state keeping unit in order to control operation. The opening and closing system for the sliding door may be installed in a vehicle equipped with a sliding door having a door-open state keeping unit and allows safe operation of the vehicle and door.
Abstract:
Drive system for moving a load along a curved path. The drive system includes a base for mounting the drive system, the base having a curved track for guiding the load along the curved path. There is a load engaging mechanism mounted on the base for movement relative to the base, the load engaging mechanism being for moving the load. The load engaging mechanism has a curved track engaging roller for engaging the curved track. A linear drive mechanism including a linearly driven member is mounted on the base. The linearly driven member includes a driving pivot. A drive link is attached to the driving pivot at a drive force receiving end of the drive link, the drive link including a driven pivot at a drive force communicating end of the drive link. The driven pivot is attached to the load engaging mechanism, whereby linear motion of the driving pivot causes motion of the load along the curved path.
Abstract:
An upwardly acting sectional door (24), including a plurality of panels (40), body portions (50) of the panels constructed of a flexible polymeric material and having a front surface (55), a cladding (80) covering the front surface of the body portions and having hooks (83, 84) at the upper and lower edges thereof, a hinge member (51) at an edge of the body portion operatively engaging the hooks of adjacent of the panels to provide relative pivotal motion between adjacent panels. Another embodiment is an upwardly acting sectional pan door (224) including, a plurality of panels (240), facers (250) of the panels defining a front surface of the door and having cooperatively engaging couplers (270) at the upper and lower edges thereof, stiles (280) at the ends of the facers receiving and attached to the facers, and hinge assemblies (290) located at the end stiles to provide relative pivotal motion between the stiles and the couplers of adjacent panels.
Abstract:
A system for raising and lowering a sectional overhead door between an open position and a closed position including, a counterbalance system adapted to be connected to the door, an operator motor assembly mounted proximate to the sectional overhead door in the closed position of the sectional overhead door, at least a portion of the operator motor assembly movable between a door operating position and a door locking position, and a locking assembly (370) having an engaged position to hold the motor assembly in the operating position and a disengaged position to release the motor assembly allowing it to move to the door locking position. The system may be provided with a remote light assembly having a switchable light source in sensing communication with the operator motor such that operation of the motor activates the light source. The system is further provided with a handle assembly (515) operatively engaging the motor assembly (40) and counterbalance system (30) to selectively disconnect the motor assembly (40) from the counterbalance system (30), whereby urging of a rotatable handle (516) to a disconnect position (516null) allows the door (D) to be manually freely moveable with the aid of the counterbalance system (30).
Abstract:
A method is provided for controlling a power sliding door system having a power drive mechanism for propelling the sliding door and a power latching mechanism for latching the sliding door in a latched condition. The methodology provides enhanced monitoring and control of the power sliding door system to improve the operation of the sliding door in both the power-assisted and manual modes. The control methodology inhibits the operation of the power sliding door system in response to the actuation of any of the sliding door handles or if a fuel door is in the path of the sliding door. The control methodology also inhibits the operation of the sliding door system if a child guard mechanism is enabled. The control methodology includes an obstacle detection routine which detects obstacles in two directions of travel. The control methodology does not require the power drive mechanism or inertia to cause the latch mechanism to latch the sliding door in the latched condition.
Abstract:
The invention discloses a window with multi-way for opening, which can be in pull/push and opened outwards even in pull/push process through elements like sliding pipes etc. There are frame assembly and sash assembly. Each horizontal frame has a cavity with an opening, a guide track for sliding mounted on the bottom slab, and a pair of subsidiary guide tracks provided on the side slabs. Several roller devices are arranged along sliding pipe assembly and matched with the guide track and subsidiary guide track of the horizontal frame. Therefore, the sliding pipe assembly can be moved along the horizontal frame. Furthermore, a hinge assembly fastened to the sliding pipe is provided in one of the stile of sash assembly to be used for supporting rotation of the sash assembly.
Abstract:
Door operator for opening, closing and locking at least one door panel on a transit vehicle. It has at least one base portion for mounting on the vehicle and at least one fixed support member attached to the base portion(s) . It has door hanger(s) for attachment of the door panel(s) and moveable door support member(s) attached to the door hanger(s). The moveable door support member(s) engage the fixed support member(s) to support the door panel(s) while permitting opening and closing motions of the panel(s) . The operator includes at least one door drive having base mounted portion(s) and hanger mounted portion(s), the hanger mounted portion(s) engaging the base mounted portion(s) to be moved thereby to move the panel(s) in opening and closing direction(s). The operator has a lock for securing the door panel(s) in closed position(s), the lock having a lock shaft which includes at least one primary lock means for preventing motion of the base mounted door drive portion(s) and at least one secondary lock means engaging the door hanger(s). The lock includes a lock shaft engaging means which rotates the lock shaft to a locking position when the door panel(s) are closed. The lock also has an unlocking actuator for unlocking the door panel(s), the unlocking actuator having a moveable portion connected to the lock shaft to rotate the lock shaft to the unlocking position.
Abstract:
A latch reinforcing block for engagement with the nose portion of any tilt latch assembly and preferably with the above-mentioned camlock/tilt latch combination, said block comprising a top and bottom and having extending from proximate the top to proximate the bottom there-through fastening portions to fasten said reinforcing block within the track of a preferred window assembly, said reinforcing block having disposed proximate the top thereof at least one cutout, notch or pocket extending towards the bottom and for receipt of a corresponding nose portion of the latch assembly in order to pass loads such as wind loads or the like to the frame section to which the reinforcing block is attached.
Abstract:
A method is provided for controlling a power sliding door system having a power drive mechanism for propelling the sliding door and a power latching mechanism for latching the sliding door in a latched condition. The methodology provides enhanced monitoring and control of the power sliding door system to improve the operation of the sliding door in both the power-assisted and manual modes. The control methodology inhibits the operation of the power sliding door system in response to the actuation of any of the sliding door handles or if a fuel door is in the path of the sliding door. The control methodology also inhibits the operation of the sliding door system if a child guard mechanism is enabled. The control methodology includes an obstacle detection routine which detects obstacles in two directions of travel. The control methodology does not require the power drive mechanism or inertia to cause the latch mechanism to latch the sliding door in the latched condition.
Abstract:
A swivel-sliding door system for a vehicle having at least one door leaf situated in the vehicle wall in the closed state, and situated on the outside in front of the vehicle wall in the open state while leaving a door opening free. A drive as well as transverse and longitudinal guides are provided which enable a movement at the at least one door leaf transverse relative to the vehicle wall and along the vehicle wall, wherein the drive and the transverse and longitudinal guides are combined into one complete operating unit that can be mounted as one whole in the vehicle and be coupled to the at least one door leaf. The operating unit comprises a frame which, in assembled condition, is fixedly connected to the vehicle and an assembly which is movably provided in the frame and which comprises a drive motor for the door leaf movements. The frame may include a girder extending along the door opening and end flanges provided at the ends of the girder, wherein the movable assembly is movable along the end flanges, transversely to the vehicle wall and the girder, for executing a plug movement and wherein the drive motor effects both the plug movement and the longitudinal movement of the at least one door leaf along the vehicle wall.