Abstract:
A security system with a driver circuit for energizing a solenoid actuated locking device. The circuit can include a microprocessor, a battery power supply, a boosting circuit and an energy storage circuit. The battery voltage can be stepped up by the boosting circuit and the stepped up voltage can be stored in the energy storage circuit. A solenoid driver circuit including a plurality of transistors arranged in an H-bridge configuration supply energy from the storage circuit to the solenoid under control of the microprocessor. The security system can be retrofited or is factory installable, and is particularly adapted for roll down doors and enclosures.
Abstract:
A clutch selectively transmits torque and rotary motion from a spindle having an axis of rotation to a drum. First and second shoe members disposed radially between the spindle and the drum move radially with respect to the axis of rotation between an engaged position and a disengaged position with respect to the drum. The first and second shoe members are responsive to acceleration for moving into the engaged position and responsive to rotational speed for moving into the disengaged position. A biasing spring normally maintains the first and second shoe members in the disengaged position when the spindle is at rest.
Abstract:
An automatic opener for a sectional door includes a drive unit mounted adjacent to a door drive shaft and having a reversible motor, a gear linkage for translating rotation of the motor drive shaft into rotation of the sectional door drive shaft, and a clutch which permits the gear linkage to be manually temporarily disengaged from the motor drive shaft. The drive unit is supported within a housing that is connected to an adjustable wall bracket mounting base which itself is fixed to a wall adjacent to the sectional door. A spring-biased lever attached near a lower end of the sectional door pivots in response to slack in a door cable to automatically lock the door when it is completely shut. The locking mechanism automatically unlocks the door either when the drive unit is actuated to open the sectional door or when the clutch is utilized to disengage the gear linkage from the motor drive shaft.
Abstract:
Control systems including control circuitry and optional communications systems for operating a sliding power-operated member of an automotive vehicle. A powered sliding door in an automotive vehicle, such as a van, moves along a predetermined path of travel between a closed position and a fully open position relative to the body of the vehicle. Such a sliding door may be provided with one or more electrically-operated actuators for performing functions associated with the door, such as power opening and closing the door, power unlatching the door, power locking and unlocking the door, and power clamping and unclamping the door in a soft or low-momentum manner. The invention is directed toward improved control systems and circuitry for operating such power-sliding door systems. One such control system employs a wireless communications link between the door and body, which is preferably implemented using radio frequency communication signals containing digitally encoded control signals. Control circuitry is preferably provided in the body and the door of the vehicle for supervising and carrying out the foregoing functions in an orderly manner in response to requests generated locally at the door or remotely by the driver from the console of the vehicle. A second, simpler, control system provides electrically-actuated mechanisms for unlatching the door and operating the door lock without the use of either a wireless communication system or a retractable electrical cable interconnecting the sliding door to the vehicle body.
Abstract:
A tank lock system for a gasoline tank of a motor vehicle having a filler neck in a fueling area near the periphery of the motor vehicle body, a tank cap for sealingly closing the filler neck, as well as a pivotable tank cover for covering or providing access to the fueling area, and a device for the unlocking of the tank cap. The tank cap and the tank cover constitute a single unit for simultaneously opening or closing the filler neck and providing or denying access to the fueling area, thereby ensuring a safe, secure, and comfortable operation of a tank lock system.
Abstract:
A fixing device for an actuator to control the opening and closing of a leaf of a door or a gate has a hinged support assembly that includes a part fixed to the pillar and freely hinged at a first location to one end of the actuator, an elongated body hinged at a first end to the part fixed to the pillar and offset from the hinge of the actuator, and hingedly coupled at its other end to the distal end of the actuator, and an arm articulated at a first end to the leaf and hingedly coupled at its other end to the elongated body opposite the part fixed to the pillar. The actuator, the elongated body and the arm are substantially aligned with each other and angularly aligned with the leaf to form a triangulation in the closed position for providing angular locking of the leaf in the closed position. A hinged part of the elongated body taking the arm for coupling to the leaf is equipped with an arrangement for providing temporary locking of the leaf in an open position.
Abstract:
The present invention is provided with a mechanism for controlling the opening and closing of a door comprising a speed reduction means for reducing a rotational speed. A high speed shaft is connected to the speed reduction means and is connectable to a means for rotating the input shaft, and a low speed output shaft is connected to the speed reduction means. A governor is mounted on the input shaft for limiting the rotational speed thereof, to also regulate the rotational speed of the output shaft. A brake is provided for preventing rotation of the output shaft, and a self-closing mechanism is operatively connected to the door. The self-closing mechanism is adapted for storing energy when the door is opened to an open position, and a connecting means operatively connects the output shaft to the self-closing mechanism. A releasing means is provided for releasing the brake to permit rotation of the output shaft under the urging of the self-closing mechanism whereby the self-closing mechanism releases the energy stored therein so as to close the door to a closed position when the brake is released by the releasing means.
Abstract:
A van door slidable in tracks (16, 18 and 20). An operating module is mounted inside the van adjacent center track 18. A front cable attached to drive pulley (144) extends through guide assembly (54) to hinge and roller assemble (26). A rear cable attached to drive pulley (136) extends through guide assembly (56) to hinge and roller assembly (26). The drive pulleys (136 and 144) each have a large diameter spiral cable groove (164), a small diameter cable groove (208) and a transition cable groove (210). A motor rotates the drive pulleys. The small diameter cable grooves drive the door when the door is in the forward portion of the tracks. The large diameter spiral cable grooves drive the door when the door is in the center and rear portions of the track. Fixed idler rollers (226 and 254) are positioned relative to the cable drive pulleys to insure that the total cable in the continuous cable loop is substantially the same when the cable is driven by the small diameter cable grooves as when the cable is driven by the large diameter spiral cable grooves. A cable tension system (220) maintains cable tension. A slack cable take-up pulley (174) on the drive pulley (136) is locked in position by teeth (194) thereon and arcuate tooth rack (172) which move into engagement by rotation of the drive pulley (144) relative to drive pulley (136).
Abstract:
A safe locking assembly allows a safe to be securely locked and to be unlocked from a remote location. The attachment has arms attached to opposite side walls of the safe and a swing arm at the front to extend across the safe door. The swing arm is attracted to one side arm by an electromagnet which prevents the swing arm from swinging open to obtain access to the safe door. The electromagnet can be deactivated by a remote switch to allow the swing arm to open and provide access to the safe. The device is useful for safes to which access is needed on a frequent basis to obviate the need for operating the safe's own combination or other lock each time the safe is to be opened and closed.
Abstract:
A gate opening and closing apparatus for moving a gate between a gate closed position which covers an access opening and a gate opened position. The apparatus comprises an electric motor for driving the gate between the open position and the closed position. A connecting arrangement connects the electric motor to the gate in order to enable powered movement of the gate between the gate opened and gate closed positions. A control unit in the form of a microprocessor control unit is operatively connected to the electric motor for control of the same and hence control of the movement of the gate. The gate normally remains unlocked at the closed position and is only locked when a force is applied to the gate tending to move same to the open position. In one embodiment, a positive locking mechanism, such as a solenoid lock may be provided and which is automatically locked when an opening force is applied to the gate. In another embodiment, the gate is not positively locked and the electric motor applies a closing force to the gate to overcome any effort of an opening movement. The gate opening and closing mechanism is uniquely constructed in that there is no gear box which would otherwise preclude a manual opening of the gate in the event of emergency.