摘要:
Adiponitrile is made by reacting 3-pentenenitrile with hydrogen cyanide. The 3-pentenenitrile is made by reacting 1,3-butadiene with hydrogen cyanide and by isomerizing 2-methyl-3-butenenitrile. The reaction of 1,3-butadiene with hydrogen cyanide to produce 3-pentenenitrile also produces small amounts of dinitrile compounds, including adiponitrile (ADN) and methylglutaronitrile (MGN). Methylglutaronitrile is removed to provide an adiponitrile-enriched stream, which is used in a catalyst purification step.
摘要:
The invention relates to a composition comprising a polyester, a photoreactive comonomer and a co-reactant, wherein the co-reactant comprises at least one member selected from the group consisting of an unsaturated diol, an unsaturated aliphatic diacid, an unsaturated aromatic diacid, an unsaturated aliphatic ester, an unsaturated aromatic ester, an unsaturated anhydride and mixtures thereof. Other aspects of the present invention include articles produced from these compositions and processes for producing these compositions.
摘要:
The invention relates to methods for enriching monomer content in a cycloalkane oxidation process mixed organic waste stream. In particular, the methods involve combining a biocatalyst with a mixed organic waste stream from a cycloalkane oxidation process, and enzymatically converting dimeric and/or oligomeric components of said waste stream into monomeric components. The methods may enrich the content of diacids, adipic acid, and/or other α,ω-difunctional C6 alkanes in the mixed organic waste stream. Additionally, the treated mixed organic waste streams may have improved burning efficiency.
摘要:
The invention relates to methods for enriching monomer content in a cycloalkane oxidation process mixed organic waste stream. In particular, the methods involve combining a biocatalyst with a mixed organic waste stream from a cycloalkane oxidation process, and enzymatically converting dimeric and/or oligomeric components of said waste stream into monomeric components. The methods may enrich the content of diacids, adipic acid, and/or other α,ω-difunctional C6 alkanes in the mixed organic waste stream. Additionally, the treated mixed organic waste streams may have improved burning efficiency.
摘要:
Disclosed are methods for producing butadiene from one or more of several diverse feedstocks including bioderived feedstocks, renewable feedstocks, petrochemical feedstocks and natural gas.
摘要:
A process is disclosed which employs hydrogenation and esterification to form alkyl diesters. The process subjects an unrefined or otherwise not purified composition comprising maleic anhydride production residue to the processes of hydrogenation and esterification and forming diesters at high conversion efficiency.
摘要:
The invention provides a process for hydrocyanation, comprising: contacting 2-pentenenitrile with hydrogen cyanide at a temperature in the range of about 0° C. to about 150° C. in the presence of at least one Lewis acid promoter and a catalyst precursor composition, wherein the catalyst precursor composition comprises a zero-valent nickel and at least one bidentate phosphite ligand selected from a member of the group represented by Formula I and Formula II, in which all like reference characters have the same meaning, except as further explicitly limited: wherein R1 and R5 are independently selected from the group consisting of C1 to C5 hydrocarbyl; and R2, R3, R4, R6, R7 and R8 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.
摘要:
The invention provides a hydrocyanation process to produce adiponitrile and other dinitriles having six carbon atoms, in the presence of catalyst composition comprising a zero-valent nickel and at least one bidentate phosphorus-containing ligand wherein the bidentate phosphorus-containing ligand gives acceptable results according to at least one protocol of the 2-Pentenenitrile Hydrocyanation Test Method.
摘要:
Disclosed is the preparation of improved high strength nylon staple fibers having a denier per filament of 1.0 to 3.0, a tenacity T at break of at least about 6.0, and a load-bearing capacity, T7, of greater than 3.2. Such nylon staple fibers are produced by preparing tows of relatively uniformly spun and quenched nylon filaments, drawing and annealing such tows via a two-stage drawing and annealing operation using relatively high draw ratios and then cutting or otherwise converting the drawn and annealed tows into the desired high strength nylon staple fibers. The nylon staple fibers so prepared can be blended with other fibers such as cotton staple fibers to produce nylon/cotton (NYCO) yarns which are also of desirably high strength.
摘要:
The invention provides an integrated, continuous process for the production of 3-pentenenitrile, the refining of 3-pentenenitrile, and the refining of 2-methyl-3-butenenitrile, the process comprising: (a) contacting, in a reaction zone, a hydrogen cyanide-containing feed, a butadiene-containing feed, and a catalyst composition, wherein the catalyst composition comprises a zero-valent nickel and at least one bidentate phosphorus-containing ligand selected from the group consisting of a phosphite, a phosphonite, a phosphinite, a phosphine, a mixed phosphorus-containing ligand, and combination thereof; (b) maintaining a residence time in the reaction zone sufficient to convert about 95% or more of the hydrogen cyanide and to produce a reaction mixture comprising 3-pentenenitrile and 2-methyl-3-butenenitrile, wherein the 2-methyl-3-butenenitrile concentration is maintained below about 15 weight percent of the total mass of the reaction mixture; (c) distilling the reaction mixture to obtain a first stream comprising 1,3-butadiene, a second stream comprising 3-pentenenitrile, 2-methyl-3-butenenitrile, (Z)-2-methyl-2-butenenitrile, and optionally 1,3-butadiene, and a third stream comprising the catalyst composition; (d) distilling the second stream to obtain a fourth stream comprising 1,3-butadiene, a fifth stream comprising 2-methyl-3-butenenitrile, (Z)-2-methyl-2-butenenitrile, and optionally 1,3-butadiene, and a sixth stream comprising 3-pentenenitrile; and (e) distilling the fifth stream to obtain a seventh stream comprising 1,3-butadiene, an eighth stream comprising (Z)-2-methyl-2-butenenitrile, and a ninth stream comprising 2-methyl-3-butenenitrile.