Abstract:
A thermal radiation sensor is disclosed wherein a semiconductor thermocouple comprised of a pair of silicon diodes is connected in back-to-back relationship, with one of the diodes being located in a detector stage. The other diode is located in a heat bath stage together with a sensed temperature difference amplifier. The detector stage is thermally isolated from the heat bath stage by a low thermal conductivity link that includes electrical wires which connect the back-to-back diodes to the amplifier.
Abstract:
A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.
Abstract:
A method and a coarse tuning circuit for performing direct frequency selection and down-conversion on a received analog bandpass signal for a digital receiver having C channels are disclosed. Each of the C channels has a bandwidth B. The analog bandpass signal in a channel of interest has a center frequency f.sub.c and a two-sided bandwidth not greater than B. The method comprises the following steps: (a) sampling the bandpass signal at a sampling frequency f.sub.s greater than twice the product of B and C, to produce a digital sampled signal which has an intermediate frequency much closer to the baseband frequency of zero kilohertz than the sampling frequency f.sub.s ; (b) computing, from f.sub.c and f.sub.s, a non-negative integer value m to determine the selection of a channel from the C channels of the digital receiver; and (c) forming directly from the digital sampled signal two digital signals I.sub.1 and Q.sub.1 such that they correspond to a digital in-phase component and a quadrature component, respectively, of a complex signal which is approximately centered at a frequency .DELTA.f proximate of the baseband frequency, and which has a frequency spectrum approximately equal to that of the analog bandpass signal.
Abstract:
A cryogenic bypass current lead to bypass quenched magnets in a string of magnets in a superconducting super collider comprises a HTSC section interposed between a lower conductive body terminal and the conductive of the lead is described.
Abstract:
Apparatus, methods, systems and devices for providing a temperature independent laser by determining a temperature dependence of a lasing wavelength, selecting the lasing wavelength having minimal temperature dependence and constraining the lasing wavelength of the laser device to the selected lasing wavelength. In an embodiment, a volumetric Bragg grating in photo-thermal refractive glass is used as a laser cavity mirror for constraining the laser emission at the selected wavelength. The laser device may be a broad spectrum laser such as an Er3+ doped glass broad spectrum laser. In an embodiment, the lasers are operated where the temperature dependence of the stimulated emission cross section is used to compensate for temperature dependent changes of other laser components.
Abstract:
Signal conversion is implemented employing a memory system operating as a look-up table that stores a plurality of sets of output samples associated with each of a plurality of respective input samples. The look-up table thus can generate a corresponding set of output samples in response to a given input sample, thereby emulating desired digital upsampling and delta-sigma modulation. The output samples can be aggregated, such as by multiplexing, to provide an output data stream at a desired sample rate.
Abstract:
A communications system (10) which utilizes an M-ary QAM signal constellation suitable for non-linear applications. The communications system includes a modulator (18) for utilizing the M-ary constellation to implement the modulation. The M-ary constellation is a circular constellation which provides a simplified amplitude predistortion by utilizing the subject M-ary constellations, enabling more efficient communications can then be achieved through a peak-power-limited non-linear channel (16). Such non-linear channels (16) are more power efficient at creating RF energy from DC energy.