摘要:
Described herein are fuel cell systems and methods of increasing fuel cell system efficiency. The systems include a fuel processor that produces hydrogen from a fuel source and a fuel cell that generates electrical energy using the hydrogen. An electronics device that receives the electrical energy may also include the fuel cell system and a heat-generating component. The invention uses heat from the fuel cell and/or heat from the heat-generating electronics component to preheat a liquid fuel source. This reduces or potentially eliminates the need for fuel source heating in the fuel processor.
摘要:
Described herein is a fuel processor that produces hydrogen from a fuel source. The fuel processor comprises a reformer and burner. The reformer includes a catalyst that facilitates the production of hydrogen from the fuel source. Voluminous reformer chamber designs are provided that increase the amount of catalyst that can be used in a reformer and increase hydrogen output for a given fuel processor size. The burner provides heat to the reformer. One or more burners may be configured to surround a reformer on multiple sides to increase thermal transfer to the reformer. Dewars are also described that increase thermal management of a fuel processor and increase burner efficiency. A dewar includes one or more dewar chambers that receive inlet air before a burner receives the air. The dewar is arranged such that air passing through the dewar chamber intercepts heat generated in the burner before the heat escapes the fuel processor.
摘要:
The invention relates to a portable electrical energy generator, its components, and manufacture of the components and generator. The generator includes a bi-polar plate stack, which is well suited for use in a fuel cell. The stack may include at least one spacer that limits compression of a membrane electrode assembly in the fuel cell. The stack may also include a polymer binder that holds the stack together and/or maintains a compression force on the membrane electrode assembly. An open cathode manifold may also provided to ease oxygen movement. High throughput and low cost manufacture of bi-polar plates is also described herein.
摘要:
Described herein are fuel cell systems and methods of using fuel cell systems. The systems include a fuel cell that generates electrical energy using hydrogen and a fuel processor that produces hydrogen from a fuel source. The fuel processor includes a reformer and a burner that heats the reformer. One heat efficient fuel cell system described herein heats internal portions of a fuel cell using a heating medium from a fuel processor. The heating medium may comprise gases exhausted at high temperatures from the fuel processor, which are then transported to the fuel cell. The heating medium may also include a gas that reacts catalytically in the fuel cell to produce heat. Systems and methods for expediting fuel cell system start up are provided. Methods for shutting down a fuel cell system are also described that reduce the amount of moisture and gases in the reformer and in one or more fuel cell components. One hydrogen efficient fuel cell system described herein transports hydrogen to an inlet of a burner. The hydrogen may comprise unused hydrogen from a fuel cell and/or hydrogen produced in a reformer. The burner comprises a catalyst that facilitates production of heat in the presence of the hydrogen.
摘要:
A power adaptor for use with a portable fuel cell system may have an adapter housing having at least one external surface and a battery receiving region, the battery receiving region configured to at least partially receive a battery, a first set of electrical contacts provided on the at least one external surface of the adapter housing, a power source interface provided within the battery receiving region of the adapter housing, the power source interface in electrical communication with the first set of electrical contacts, and at least one mechanical connector provided in or on the adapter housing to facilitate detachable attachment of the adapter housing to a fuel cell system housing.
摘要:
A portable cartridge that stores a fuel for use with a fuel cell system includes one or more disposable components for use by the fuel cell system. The disposable component may be included on a fuel cartridge, but used by a fuel cell system when the cartridge and a package that includes the system are coupled together. The disposable component may include: an inlet filter that regulates passage of gases and liquids into the fuel system, an outlet filter that cleans fuel cell system exhaust gases, a sensor on the inlet air stream to the fuel cell system; a sensor on the exhaust; a desiccant that sinks moisture from within the fuel cell system package; or a fuel absorbent that soaks fuel between connectors on the fuel cartridge and the fuel cell system.
摘要:
Described herein is a fuel processor that produces hydrogen from a fuel source. The fuel processor comprises a reformer, boiler and burner. The reformer includes a catalyst to facilitate the production of hydrogen from the fuel source. A boiler heats the fuel source before receipt by the reformer. The burner provides heat to the reformer and to the boiler. The fuel processor may also comprise a dock that maintains position of the reformer and boiler within the fuel processor. Dewars are also described that improve thermal management of a fuel processor by reducing heat loss and increasing burner efficiency.
摘要:
The invention relates to systems and methods that improve distribution of fuel cartridges. The cartridges include compatibility information. A controller on the device validates the compatibility information before permitting fuel provision from the cartridge to the device. Invalid compatibility information, or absence of the compatibility information, then denies fuel flow to the device. This permits the device to validate that the cartridge and its contents are acceptable. This improves distribution by allowing the device or fuel cell manufacturer to implement cartridge selectivity by permitting cartridges from select manufacturers to provide fuel and denying cartridge of other manufacturers from providing fuel. Compatibility information stored in the cartridge memory may also be encrypted to prevent open access to the compatibility information. The compatibility information also improves fuel refilling distribution. In this case, the compatibility information permits a cartridge or device manufacturer to selectively control who can refill their cartridges.
摘要:
Described herein is a fuel processor that produces hydrogen from a fuel source. The fuel processor comprises a reformer and burner. The reformer includes a catalyst that facilitates the production of hydrogen from the fuel source. Voluminous reformer chamber designs are provided that increase the amount of catalyst that can be used in a reformer and increase hydrogen output for a given fuel processor size. The burner provides heat to the reformer. One or more burners may be configured to surround a reformer on multiple sides to increase thermal transfer to the reformer. Dewars are also described that increase thermal management of a fuel processor and increase burner efficiency. A dewar includes one or more dewar chambers that receive inlet air before a burner receives the air. The dewar is arranged such that air passing through the dewar chamber intercepts heat generated in the burner before the heat escapes the fuel processor.
摘要:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.