Abstract:
Aerogel materials, aerogel composites, and the like may be improved by the addition of opacifiers to reduce the radiative component of heat transfer. Such aerogel materials, aerogel composites, and the like may also be treated to impart or improve hydrophobicity. Such aerogel materials and methods of manufacturing the same are described.
Abstract:
The present invention describes various methods for manufacturing gel composite sheets using segmented fiber or foam reinforcements and gel precursors. Additionally, rigid panels manufactured from the resulting gel composites are also described. The gel composites are relatively flexible enough to be wound and when unwound, can be stretched flat and made into rigid panels using adhesives.
Abstract:
Aerogel-based components and systems for electric vehicle thermal management are provided. Exemplary embodiments include a heat control member. The heat control member can include reinforced aerogel compositions that are durable and easy to handle, have favorable performance for use as heat control members and thermal barriers for batteries, have favorable insulation properties, and have favorable reaction to fire, combustion and flame-resistance properties. Also provided are methods of preparing or manufacturing such reinforced aerogel compositions. In certain embodiments, the composition has a silica-based aerogel framework reinforced with a fiber and including one or more opacifying additives.
Abstract:
The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
Abstract:
The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
Abstract:
Disclosed and claimed herein are hybrid aerogels which are compositions of tetraalkoxysilanes and bis-(trialkoxysilyl) imides that exhibit low thermal conductivities and high compressive strengths. Methods for their preparation are also provided.
Abstract:
The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.
Abstract:
Aerogel materials, aerogel composites and the like may be improved by enhancing their smoke suppression, combustion reduction properties. It is additionally useful to provide aerogel based composites compatible with environments conducive to combustion. Such aerogel materials and methods of manufacturing the same are described.
Abstract:
A method for providing a mat containing aerogel, comprising the steps of immersing a ribbon (11) of fabric or non-woven fabric, unwound from a reel (12), in a solution (13) containing aerogel in suspension, drying the ribbon impregnated with aerogel solution (14), winding the dried ribbon (15) containing aerogel onto a rewinding reel (16).
Abstract:
Aerogel composite materials having a lofty fibrous batting reinforcement preferably in combination with one or both of individual short randomly oriented microfibers and conductive layers exhibit improved performance in one or all of flexibility, drape, durability, resistance to sintering, x-y thermal conductivity, x-y electrical conductivity, RFI-EMI attenuation, and/or burn-through resistance.