Abstract:
The present invention discloses novel influenza virus-like particles (VLPs) that contain chimeric proteins or influenza membrane proteins. The chimeric proteins are derived from fragments of influenza membrane proteins fused to heterologous proteins. The invention includes antigenic formulations and vaccines comprising VLPs of the invention as well as methods of making and administering VLPs to vertebrates, including methods of inducing immunity to infections, such as influenza.
Abstract:
A degreasing agent includes a mixture of trisodium phosphate, sodium silicate, sodium carbonate, sodium dodecyl benzene sulphonate, sodium hydrosulphite and octyl-phenol-polyoxyethylene ether. The degreasing agent may maintain degreasing effect for longer period of time. In addition, the metal product cleaned by the degreasing agent has a low cleaning inferior rate.
Abstract:
Method for selective fabrication of high capacitance density areas in a low dielectric constant material and related structure are disclosed. In one embodiment, a first area of a dielectric layer is covered, for example with photoresist, while a second area of the dielectric layer is exposed to a dielectric conversion source such as E-beams, I-beams, oxygen plasma, or an appropriate chemical. The exposure causes the dielectric constant of the dielectric layer in the second area to increase. A number of capacitor trenches are etched in the second area of the dielectric. The capacitor trenches are then filled with an appropriate metal, such as copper, and a chemical mechanical polish is performed. The second area in which the capacitor trenches have been etched and filled has a higher capacitance density relative to the first area. In another embodiment, the exposure to the dielectric conversion source is not performed until after the chemical mechanical polish has been performed. In yet another embodiment, a blanket layer of metal, such as aluminum, is first deposited. The blanket layer of metal is then etched to form metal lines. Then a gap fill dielectric is utilized to fill the gaps between the remaining metal lines. A first area of the gap fill dielectric is then covered and a second area of the gap fill dielectric is exposed to a dielectric conversion source. After exposure to the dielectric conversion source, the dielectric constant of the gap fill dielectric in the second area increases. The metal lines in the second area can then be used as capacitor electrodes of a high density capacitor.
Abstract:
A method of a user interface for red eye removal in a portable device includes displaying a first screen having an image and a first menu. If a user selects a first icon in the first menu, the method further includes displaying a second screen having the image after automatic red eye removal and a second menu. If the user selects a second icon in the second menu, the method further includes redisplaying the second screen having the image prior to automatic red eye removal. If the user selects a third icon in the second menu, the method further includes displaying a third screen having the image, a visual indicator for the location of manual red eye removal, and a third menu. If the user selects a fourth icon in the third menu, the method further includes redisplaying the second screen with the image after manual red eye removal.
Abstract:
An interconnect structure and fabrication method are provided to form air gaps between interconnect lines and between interconnect layers. A conductive material is deposited and patterned to form a first level of interconnect lines. A first dielectric layer is deposited over the first level of interconnect lines. One or more air gaps are formed in the first dielectric layer to reduce inter-layer capacitance, intra-layer capacitance or both inter-layer and intra-layer capacitance. At least one support pillar remains in the first dielectric layer to promote mechanical strength and thermal conductivity. A sealing layer is deposited over the first insulative layer to seal the air gaps. Via holes are patterned and etched through the sealing layer and the first dielectric layer. A conductive material is deposited to fill the via holes and form conductive plugs therein. Thereafter, a conductive material is deposited and patterned to form a second level of interconnect lines.
Abstract:
A damascene interconnect that reduces interconnect intra-layer capacitance and/or inter-layer capacitance is provided. The damascene interconnect structure has air gaps between metal lines and/or metal layers. The interconnect structure is fabricated to a via level through a processing step prior to forming contact vias, then one or more air gaps are formed into the damascene structure so that the air gaps are positioned between selected metal lines. A sealing layer is then deposited over the damascene structure to seal the air gaps.
Abstract:
An apparatus for channel interleaving comprises a spatial birefringent device assembly and a reflector which is configured so as to direct light from the spatial birefringent device assembly back through the spatial birefringent device assembly. The spatial birefringent device assembly comprises at least one spatial birefringent device. Directing light from the spatial birefringent device assembly back through the spatial birefringent device assembly substantially mitigates cross-talk and/or dispersion of the apparatus for channel interleaving in communications.
Abstract:
A filter for filtering electromagnetic radiation has two polarization selection elements and a birefringent element assembly disposed intermediate polarization selection elements. The birefringent element assembly is configured so as to optimize contributions of a fundamental and at least one odd harmonic of a transmission vs. wavelength curve in a manner which enhances transmission vs. wavelength curve stopband depth and passband flatness, so as to enhance performance and mitigate cross-talk.
Abstract:
A semiconductor process and structure is provided for use in single or dual damascene metallization processes. A thin metal layer which serves as an etch stop and masking layer is deposited upon a first dielectric layer. Then, a second dielectric layer is deposited upon the thin metallization masking layer. The thin metallization masking layer provides an etch stop to form the bottom of the in-laid conductor grooves. In a dual damascene process, the thin metallization masking layer leaves open the via regions. Thus, the conductor grooves above the metallization masking layer and the via regions may be etched in the first and second dielectric in one step. In a single damascene process, the thin metallization etch masking layer may cover the via regions. The etch stop and masking layer can be formed from any conductive or non-conductive materials whose chemical, mechanical, thermal and electrical properties are compatible with the process and circuit performance.
Abstract:
Method for fabrication of on-chip inductors and related structure are disclosed. According to one embodiment, inductors are formed by patterning conductors within a certain dielectric layer in a semiconductor die. Thereafter, the entire dielectric layer in the semiconductor die is subjected to a blanket implantation or sputtering of high permeability material. According to another embodiment, a first area in a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor die includes a patterned conductor which is to be used as an inductor. The patterned conductor is also covered, for example, with photoresist. The second area, excluding the covered patterned conductor is subjected to implantation or sputtering of high permeability material. According to yet another embodiment, a first area of a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor area includes a patterned conductor which is to be used as an inductor. This second area, including the patterned conductor, is subjected to implantation or sputtering of high permeability material. The implantation or sputtering of high permeability materials result in the inductors having much higher inductance values than they would otherwise have.