Abstract:
A method for forming an ultra narrow semiconductive gate structure utilizes a tapered hardmask covered by an oxide liner. The tapered hardmask is formed over the semiconductive gate material by tapered etching. After the tapered hardmask structure is formed over the semiconductive material, an oxide layer is formed over the tapered hardmask. A sequence of highly selective etch operations are carried out to etch uncovered portions of the semiconductive gate material while the portions of the gate material covered by the tapered hardmask and oxide film remain unetched to form ultra narrow gate structures.
Abstract:
A method of forming a silicided gate on a substrate having active regions is provided. The method comprises forming silicide in the active regions and a portion of the gate, leaving a remaining portion of the gate unsilicided; forming a shielding layer over the active regions and gate after the forming step; forming a coating layer over portions of the shielding layer over the active regions; opening the shielding layer to expose the gate, wherein the coating layer protects the portions of the shielding layer over the active regions during the opening step; depositing a metal layer over the exposed gate; and annealing to cause the metal to react with the gate to silicidize at least a part of the remaining portion of the gate.
Abstract:
A method for forming an ultra narrow semiconductive gate structure utilizes a tapered hardmask covered by an oxide liner. The tapered hardmask is formed over the semiconductive gate material by tapered etching. After the tapered hardmask structure is formed over the semiconductive material, an oxide layer is formed over the tapered hardmask. A sequence of highly selective etch operations are carried out to etch uncovered portions of the semiconductive gate material while the portions of the gate material covered by the tapered hardmask and oxide film remain unetched to form ultra narrow gate structures.
Abstract:
A process for trimming a photoresist layer during the fabrication of a gate electrode in a MOSFET is described. A bilayer stack with a top photoresist layer on a thicker organic underlayer is patternwise exposed with 193 nm or 157 nm radiation to form a feature having a width w1 in the top layer. A pattern transfer through the underlayer is performed with an anisotropic etch based on H2/N2 and SO2 chemistry. The feature formed in the bilayer stack is trimmed by 10 nm or more to a width w2 by a HBr/O2/Cl2 plasma etch. The pattern transfer through an underlying gate layer is performed with a third etch based on HBr/O2/Cl2 chemistry. The underlayer is stripped by an O2 ashing with no damage to the gate electrode. Excellent profile control of the gate electrode is achieved and a larger (w1−w2) is possible than in prior art methods.
Abstract translation:描述了在MOSFET的栅电极制造期间修整光致抗蚀剂层的工艺。 在较厚的有机底层上具有顶部光致抗蚀剂层的双层叠层以193nm或157nm辐射图案曝光以形成顶层中具有宽度w 1 1的特征。 通过底层的图案转移通过基于H 2 N 2 N 2 N 2 SO 3和SO 2 H 2化学的各向异性蚀刻进行。 通过HBr / O 2 / Cl 2等离子体将形成在双层叠层中的特征修剪10nm以上至宽度w 2 2 <! - SIPO
Abstract:
A method for forming a pullback opening above a shallow trench isolation structure. A patterned mask layer is formed over a substrate. A sacrificial layer is formed on the sidewalls of the mask layer. The exposed portion of the substrate is etched to form a trench in the substrate. The sacrificial layer is removed to increase the width of the opening above the trench.
Abstract:
A double recess crown-shaped DRAM capacitor is formed in a simplified process. A dielectric layer is formed over a substrate. Using photolithographic and etching techniques, a contact opening is formed in the dielectric layer. A conductive layer is formed over the dielectric layer filling the contact opening to form a conductive plug. A second dielectric layer is formed over the conductive layer. Again using photolithographic and etching techniques, the second dielectric layer is patterned to form a trapezoidal-shaped dielectric layer. An organic bottom anti-reflective coating (organic BARC) is coated over the trapezoidal-shaped dielectric layer and the conductive layer. Organic BARC above the trapezoidal-shaped dielectric layer is removed. Using the organic BARC as an etching mask, the trapezoidal-shaped dielectric layer is etched to form triangular-shaped dielectric layers and a trench in the conductive layer. The residual organic BARC is completely removed. Using the triangular-shaped dielectric layers as a hard etching mask, two types of trenches each having a different depth are formed in the conductive layer. The triangular-shaped dielectric layers are removed to form a double-recess lower electrode. Hemispherical silicon grains are grown over the interior surface of the double-recess lower electrode as well as the external sidewalls. Finally, a conformal dielectric layer and a conformal conductive layer are sequentially formed over the surface of the double-recess lower electrode.
Abstract:
A semiconductor device with improved roll-off resistivity and reliability are provided. The semiconductor device includes a gate dielectric overlying a semiconductor substrate, a gate electrode overlying the gate dielectric, a gate silicide region on the gate electrode, a source/drain region adjacent the gate dielectric, and a source/drain silicide region on the source/drain region, wherein the source/drain silicide region and the gate silicide region have different metal compositions.
Abstract:
A semiconductor device includes a blocking structure between a metal layer and at least one underlying layer. The blocking structure has a first layer configured for preventing diffusion of metal from the metal layer into the at least one underlying layer, and a second layer configured for enhancing electrical performance of the semiconductor device.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a substrate. A dummy gate is formed over the substrate. A dielectric material is formed around the dummy gate. The dummy gate is then removed to form an opening in the dielectric material. Thereafter, a work function metal layer is formed to partially fill the opening. The remainder of the opening is then filled with a conductive layer using one of a polysilicon substitute method and a spin coating method.
Abstract:
The present disclosure provides various methods of fabricating a semiconductor device. A method of fabricating a semiconductor device includes providing a semiconductor substrate and forming a gate structure over the substrate. The gate structure includes a first spacer and a second spacer formed apart from the first spacer. The gate structure also includes a dummy gate formed between the first and second spacers. The method also includes removing a portion of the dummy gate from the gate structure thereby forming a partial trench. Additionally, the method includes removing a portion of the first spacer and a portion of the second spacer adjacent the partial trench thereby forming a widened portion of the partial trench. In addition, the method includes removing a remaining portion of the dummy gate from the gate structure thereby forming a full trench. A high k film and a metal gate are formed in the full trench.