Abstract:
A vehicle is provided with a luggage compartment that houses an additional support unit having a loading floor, height-adjustable between a lowered position and at least one raised position; when in the raised position, the loading floor is supported, but can rotate upwards about a horizontal axis of rotation; the unit has two levers, which are hinged to a fixed structure about a first horizontal axis and to the loading floor about a second horizontal axis, which is set apart from the first horizontal axis by a variable distance.
Abstract:
A hybrid powertrain unit includes an internal-combustion engine, and a gearbox device with a primary shaft that can be connected to the shaft of the internal-combustion engine via a clutch device. The gearbox device includes a secondary shaft with an output pinion meshing with a first crown wheel of a differential, the casing of which is rigidly connected to the casing of the gearbox device. An electrical machine is designed to function as electric motor and as electric generator, having a shaft connected by a transmission to a second crown wheel of the differential. An engagement device driven via an electronic control actuator is set between the shaft of the electrical machine and the second crown wheel. The electrical machine can be set coaxially to the output shafts of the differential or parallel thereto. Alternatively, the shaft of the electrical machine may be connected to the shaft of the internal-combustion engine by means of a belt transmission and engagement device.
Abstract:
A driving style evaluation system (1) for a motor vehicle (2), configured to compute a Driving Style Evaluation Index (DSEI) based on the following summary index: Fuel Economy Index (FED, which is indicative of the driving style of the motor vehicle driver from the fuel saving perspective, and is computed based on pre-summary indices computed based on respective partial indices in turn computed based on a combination of physical quantities and wherein the pre-summary and partial indices are weighted by means of respective dynamic weighting coefficients.
Abstract:
An automotive electronic control system for a motor vehicle is provided. The automotive electronic control system is designed to cause the motor vehicle to enter a freewheel running condition with internal combustion engine off if the automotive electronic control system determines, based on received quantities indicative of operative conditions of the motor vehicle, occurrence of a driver-performable action indicative of the will of the driver to enter a freewheel running condition with internal combustion engine off and occurrence at or within a given time from the occurrence of the driver-performable action and the maintaining for a given time of specific predetermined entry conditions. The automotive electronic control system is further designed to cause the motor vehicle to leave a freewheel running condition with internal combustion engine off if the automotive electronic control system determines, based on the received quantities, occurrence of at least one of specific predetermined exit conditions.
Abstract:
A method for making three-dimensional structures of nanometric or micrometric dimensions comprises the following steps: obtaining of a photopolymeric or UV mixture including nanoparticles orientable in space; deposition of a layer of the mixture on a respective substrate; exposure of the layer to UV-radiation and control of the polymerization of the mixture by means of variation of its index of refraction; application of a magnetic and/or electrical field for producing a desired positioning of the nanoparticles, in order to induce the growth of surface projections from the layer of mixture; and polymerization of the mixture.
Abstract:
A support device for motor-vehicle wheel hubs adapted to be mounted between the hub and the body of the rear suspension, consisting of a connection element (12), rotatably connected to the body of the suspension and adapted to rotate on a plane which is basically perpendicular to the ground and parallel to the longer axis of the motor-vehicle, provided with attachments (15) for the hub (16) and connected to an elastic element (20), articulated on the body of the suspension (2, 3) and adapted to control its rotation.
Abstract:
VTOL micro-aircraft comprising a first and a second ducted rotor mutually aligned and distanced according to a common axis and whose propellers are driven in rotation in mutually opposite directions. Between the two ducted rotors are positioned a fuselage and a wing system formed by wing profiles forming an X or an H configuration and provided with control flaps.
Abstract:
A method of diagnosing a vehicle compressed-air generating system, the method including the steps of: acquiring a number of operating data items associated with operation of the compressed-air generating system between turn-on of the system and subsequent turn-off of the system; processing the acquired operating data items and accumulating the data items to create at least one database; and examining the location of the data items in the database to determine malfunction and/or potential malfunction situations of the compressed-air generating system.
Abstract:
A light guide for display devices of the head-mounted or head-up type comprises: a body of the light guide (22) at least in part transparent to visible light; a coupling device (24) associated to the body of the light guide (22) and designed to couple the body (22) to an optical system (18) designed to generate an image, the coupling device (24) being obtained in such a way that the light beams coming from the optical system (18) enter the body of the light guide (22) and propagate within the body (22) by total internal reflection; and an image-extraction grating, designed to extract the light beams that propagate in the body of the light guide (22) so as to enable an observer to visualize the extracted image against a background visible in transparency through the body of the light guide (22). The extraction grating (32) is set in the proximity of one of the outer surfaces of the guide and has a saw-tooth profile. The extraction grating (32) is coated with a partially reflecting coating deposited prevalently on the surfaces of the teeth that are least inclined with respect to the surfaces (22) of the guide.