Abstract:
The invention provides a high quality composite phosphor powder which ensures diversity in emission spectrum, color reproduction index, color temperature and color, a light emitting device using the same and a method for manufacturing the composite phosphor powder. The composite phosphor powder comprises composite particles. Each of the composite particles includes at least two types of phosphor particles and a light transmitting binder. The phosphor particles have different emission spectrums. In addition, the light transmitting binder is formed between the phosphor particles and binds them together.
Abstract:
A white light emitting device including: a blue light emitting diode (LED); a green silicate phosphor formed on the blue LED; and a red sulfide phosphor with a surface coated with a silicone oxide layer, the red sulfide phosphor formed on the blue LED.
Abstract:
The present invention relates to a light emitting diode package and a manufacturing method thereof.The light emitting diode package includes a substrate, an LED chip mounted on an upper part of a substrate, a molding material coated at the upper part of the substrate including an external surface of the LED chip, and an encapsulant coated at a lower part of the substrate and can improve luminous efficiency, minimize a package failure, and reduce a manufacture cost by facilitating the manufacturing process.
Abstract:
Provided is a white light emitting diode (LED) including a blue LED chip; and yellow, green, and red light emitting phosphors that are coated on the blue LED chip at a predetermined mixing ratio and converts light, emitted from the blue LED chip, into white light.
Abstract:
There is provided a white light emitting device including: a blue LED emitting blue light; a red phosphor excited by the blue light, emitting red light, and including a nitrogen (N)-containing compound; a yellow phosphor excited by the blue light and emitting yellow light; a first green phosphor excited by the blue light, emitting first green light having a first full width half maximum, and including a nitrogen (N)-containing compound; and a second green phosphor excited by the blue light and emitting second green light having a second full width half maximum larger than the first full width half maximum of the first green phosphor.
Abstract:
A light emitting device package includes: first and second electrodes, at least a portion of a lower surface thereof being exposed; a light emitting device disposed on an upper surface of at least one of the first and second electrodes; a reflection wall disposed on the upper surface of the first and second electrodes and surrounding the light emitting device to form a mounting part therein; and a fluorescent film disposed on the reflection wall to cover an upper portion of the mounting part. The mounting part is filled with air.
Abstract:
The invention provides a high quality composite phosphor powder which ensures diversity in emission spectrum, color reproduction index, color temperature and color, a light emitting device using the same and a method for manufacturing the composite phosphor powder. The composite phosphor powder comprises composite particles. Each of the composite particles includes at least two types of phosphor particles and a light transmitting binder. The phosphor particles have different emission spectrums. In addition, the light transmitting binder is formed between the phosphor particles and binds them together.
Abstract:
A white light emitting device including: a blue LE chip having a dominant wavelength of 430 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue LED chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram, and the red phosphor includes a phosphor represented by (Sr, Ba, Ca)AlSiN3:Eu and the green phosphor includes a phosphor represented by (Sr, Ba, Ca)2SiO4:Eu.