Abstract:
The disclosure provides a white inorganic coating composition, and a device employing a coating made of the composition. The white inorganic coating composition includes a first inorganic material with a refractive index of less than 1.6, a second inorganic material with a refractive index of more than 2.3, and an inorganic blue pigment.
Abstract:
The invention relates to a transparent substrate with low birefringence. The transparent substrate comprises polyimide having a repeat unit of formula (I) and has a birefringence below 0.005: wherein each A of the repeat unit, being the same or different, represents an aromatic or aliphatic group, and at least one A is an aromatic or aliphatic group containing sulfonyl functionality; each B of the repeated unit, being the same or different, represents an aromatic or cycloaliphatic group; and n is an integer greater than one.
Abstract:
The present invention provides an organic/inorganic composite film, which includes a poly(vinylidene fluoride) (PVDF) and inorganic nano-platelets dispersed therein. A weight ratio of the PVDF and the inorganic nano-platelets is between about 97:3 and 20:80. The inorganic nano-platelets have a particle size of about 20-80 nm, wherein the organic/inorganic composite film has a transparency of greater than about 85% at a wavelength between 380 and 780 nm. In addition, a method for forming the organic/inorganic composite film is also provided.
Abstract:
A substrate structure applied in flexible electrical devices is provided. The substrate structure includes a carrier, a release layer overlying the carrier with a first area and a flexible substrate overlying the release layer and the carrier with a second area, wherein the second area is larger than the first area and the flexible substrate has a greater adhesion force than that of the release layer to the carrier. The invention also provides a method for fabricating the substrate structure.
Abstract:
A release layer material of cyclic olefin copolymers (COC) applied in flexible electrical devices represented by Formula (I) or (II) is provided. The invention also provides a substrate structure including the release layer. The substrate structure includes a carrier, a release layer overlying the carrier with one or more blocks with a first area, wherein the release layer includes cyclic olefin copolymers (COC) represented by the disclosed Formula (I) or (II), and a flexible substrate overlying the release layer and the carrier with a second area, wherein the second area is larger than the first area and the flexible substrate has a greater adhesion force than that of the release layer to the carrier. The invention further provides a method for fabricating the substrate structure. In Formula (I) or (II), X is 30-70, X+Y is 100 and R is —H, —CH3 or —C2H5.
Abstract:
A polyimide optical compensation film is provided. The polyimide optical compensation film has the formula: wherein when A is cycloaliphatic, B is aromatic or cycloaliphatic, when A is aromatic, B is cycloaliphatic, and n is an integer greater than 1. The optical compensation film has in-plane retardation (R0) and thickness direction retardation (Rth).
Abstract:
A liquid crystal display. The liquid crystal display includes a color filter substrate and an array substrate, wherein at least one of the color filter substrate and the array substrate comprises polyimide having formula (I): wherein A and A′ are the same or different and comprise cycloaliphatic compounds or aromatic compounds, B and B′ are the same or different and comprise aromatic compounds, and x and y are 10˜10000, wherein at least one of A and A′ is a cycloaliphatic compound.
Abstract:
Polyhedral oligomeric silsesquioxane/polyimide nanocomposites with certain mechanical properties and low dielectric constant is synthesized by covalently tethering functionalized polyhedral oligomeric silsesquioxane molecules to polyimide. These nanocomposites appear to be self-assembled systems. A process for synthesizing said polyhedral oligomeric silsesquioxane/polyimide nanocomposites also is provided, comprising a step of forming porous type polyhedral oligomeric silsesquioxane, and a subsequent step of reacting with dianhydride or directly reacting with synthesized polyimide.
Abstract:
Polyhedral oligomeric silsesquioxane/polyimide nanocomposites with certain mechanical properties and low dielectric constant is synthesized by covalently tethering functionalized polyhedral oligomeric silsesquioxane molecules to polyimide. These nanocomposites appear to be self-assembled systems. A process for synthesizing said polyhedral oligomeric silsesquioxane/polyimide nanocomposites also is provided, comprising a step of forming porous type polyhedral oligomeric silsesquioxane, and a subsequent step of reacting with dianhydride or directly reacting with synthesized polyimide.
Abstract:
An organic/inorganic hybrid material is provided, including an organic polymer, and a plurality of inorganic nano-platelets, wherein the inorganic nano-platelets are self-connected or connected via a linker to constitute an inorganic platelet network. By the formation of the inorganic network structure, the hybrid materials can keep their transparency and flexibility at a high inorganic content, and exhibit greatly reduced coefficients of thermal expansion A method for fabricating the organic/inorganic hybrid material is also provided.