Abstract:
In accordance with some embodiments of the present disclosure, a method may include determining a range of frequencies allocated to resource blocks to be transmitted during a subsequent sub-frame slot or sounding reference symbol sub-slot. The method may also include determining an approximate center frequency of the range of frequencies. The method may additionally include modulating resource blocks of the sub-frame or sounding reference symbol sub-slot at the approximate center frequency. The method may further include transmitting the modulated resource blocks at the approximate center frequency.
Abstract:
A technique of operating a communication device includes identifying a signal null associated with a signal to be transmitted on a first communication channel. A channel gain of the first communication channel is adjusted at a time that substantially coincides with the signal null to reduce transient noise spectrum coupled from the first communication channel to one or more second communication channels.
Abstract:
A wireless communication unit comprises a transmitter having an analogue feedback power control loop with an input and a power amplifier having a power amplifier output, where the analogue feedback power control loop is arranged to feedback a signal to the input to set an output power level of the transmitter. The wireless communication unit further comprises an outer digital loop operably coupled from the power amplifier output to the transmitter.In this manner, the inner analogue loop is used to linearise a response obtained from the power amplifier and an outer digital loop wherein the outer digital loop controls the inner analogue loop with regard to saturation detection and correction as well as facilitating multi-mode operation of the wireless communication unit.
Abstract:
A wireless communication unit comprises a transmitter having an analogue feedback power control loop having a power control function arranged to set an output power level of the transmitter. The power control function comprises a predictor sub-system arranged to reduce sensitivity to loop latency of the analogue feedback power control loop.The use of a predictor sub-system provides reduced sensitivity to loop latency, gain variations and delay.
Abstract:
A technique of operating a communication device includes identifying a signal null associated with a signal to be transmitted on a first communication channel. A channel gain of the first communication channel is adjusted at a time that substantially coincides with the signal null to reduce transient noise spectrum coupled from the first communication channel to one or more second communication channels.
Abstract:
A Multi-Rate Analog-to-Digital Converter (19) is coupled to a single crystal oscillator (17) as a reference clock and has at least two separate channels arranged to sample and convert input data at two differing clock rates. Each channel derives a clock signal from the reference clock. Associated with each of the channels is a Sigma-Delta converter (10a, 10b) comprising a modulator (12), a filter (14) and a resampler (18). The modulator (12) receives input data and provides a data signal to the filter (14), which itself provides a filtered data signal to the associated data resampler. The data resampler resamples the data and provides a digital output signal. As there is sampling in the digital domain the advantages associated with signal processing, speed and low noise injection are obtained. Similarly as the output of the modulator (12) is in digital form, it can be manipulated and processed readily and with the existing software.
Abstract:
Voltage controlled oscillator (VCO) gain tracking is used for programming modulation gain settings to minimize modulation distortion in a phase locked loop of a mobile station (10). A synthesizer (20) generates a tuning voltage (Vt) for controlling a frequency of a (VCO) modulated radio frequency signal. A controller (22) outputs a modulation data signal and includes an ADC (72) for receiving the tuning voltage from the synthesizer (20) on a VCO feedback loop (70), a gain control lookup table (LUT) (76) for storing gain setting calibration data for respective mobile station sub-bands, and a gain setting (DAC) (78) for outputting a modulation gain control signal to the synthesizer (20). The modulation gain setting calibration data is calibrated using a one-time or continuous calibration methodlogy during, respectively, a background or normal mode of operation.
Abstract:
A differential charge and dump optoelectronic receiver for baseband digital optoelectronic data links is disclosed having a preamplifier and a voltage controlled current source that defines the tail current of a differential pair functioning as a two quadrant multiplier, and using capacitors as loads on the differential pair making said differential pair an integrator. The integrator provides a full differential output, part of which is fedback to control the gain of the preamplifier. In a preferred embodiment, one integrator pair is used to recover the data from a Manchester encoded data stream. In another preferred embodiment, two pairs of integrators are used for QPSK like codes.
Abstract:
A projection system for a computer has an electronic slide (94) that is coupled to an electronic image signal (84) from a processor (82) in the computer (50). Projection optics (102) focus an optical image from the electronic slide (94) onto a screen (58).
Abstract:
An optical hinge (20) provides one or more free space optical communication links through the hinge (17) of an instrument (10). The optical links include a transmitter (24) in one section (14) of the instrument (10) and a receiver (34) in the other section (16) of the instrument (10). An optical coupler (27) connects the transmitter (24) to the receiver (34) through a hinge (17).