Abstract:
An optical module for projecting a light beam comprises a solid body of transparent material into which a light source is sunk and which is delimited by an annular surface and by a central surface, and a substantially annular reflecting surface arranged around the solid body. The central and annular surfaces are suitable for receiving respective distinct portions of the luminous flux produced by the source. The reflecting surface may have a reflecting coating or may form part of a transparent body, in which case it works by total internal reflection. The reflecting surface reflects a portion of luminous flux refracted by the annular surface and shapes the flux into a predetermined distribution of luminous intensity about the principal axis. The annular surface is designed in a manner such as to reduce the overall thickness of the module by moving the refracted ray away from the principal axis. The central surface shapes the other portion of the luminous flux emitted by the source into a predetermined distribution of luminous intensity about the principal axis. The surfaces cooperate so as to shape the luminous flux as a whole emerging from the source into a distribution of luminous intensity having divergences which may be different in two directions that are perpendicular to one another and to the principal axis.
Abstract:
The aircraft comprises a fuselage, a main wing substantially of disc-like shape positioned above the fuselage, and a secondary wing which intersects the fuselage and is provided with movable control parts. The aircraft further comprises a main propulsion system including an internal combustion engine intended to drive a propeller positioned at the rear of the fuselage and a secondary propulsion system for the propulsion of the aircraft in a direction perpendicular to the ground. The secondary propulsion system includes a matrix of nozzles positioned on the lower surface of the secondary wing and arranged to emit the exhaust gases coming from the main engine in the form of micro-jets. The main propeller propulsion system and the secondary nozzle propulsion system are selectively controllable in such a way that the aircraft is able to perform three different take-off modes, that is to say a first, conventional take-off mode in which only the main propulsion system is used, a second (STOL) take-off mode in which both the main propulsion system and the secondary propulsion system are used, and a third (VTOL) take-off mode in which only the secondary propulsion system is used.
Abstract:
Described herein is a transparent-display device for motor vehicles, to be used for presentation of information to the driver and/or to the passengers, said device comprising a plurality of LED sources, addressable individually or in groups through a series of conductive paths, deposited on a transparent underlayer and connected to a control electronics, in which: i) said LED sources are integrated in the form of dice, i.e., of elements obtained by dividing up a semiconductor wafer and without package; ii) said dice are integrated on, and electrically connected to, said underlayer via technologies of the chip-on-board type; and iii) said transparent underlayer 1 is pre-arranged for being at least in part superimposed on the windscreen of the vehicle, in such a way that at least part of the information presented to the user is superimposed on the background, said background being visible to the user through said windscreen.
Abstract:
A lighting device, comprising a luminous source consisting of a LED (5) that is placed between the flanges (2,3) of a primary reflector (1), which is essentially V-shaped. A secondary reflector (7), composed of an elongated element with steps (8), runs along the extension of one of the flanges (3) of the primary reflector (1), while an elongated transparent diffuser (9) runs along the extension of the other flange (2).
Abstract:
A controlled-luminance lighting device comprising a fluorescent light source of a linear type (5), which extends longitudinally between a reflector (1) that is formed by an elongated body having a curved surface, and a set of transverse fins (3), which are set at a distance apart from one another and which define a grill for directional control of the light emitted by the light source (5). The reflector (1) defines, together with the transverse fins (3), a plurality of elements (2) set alongside one another of a generally parabolic shape.
Abstract:
A system for the production of electrical energy, comprising: a combustion chamber (14) made of material that is able to withstand high temperatures, an injection device (16) connected to said combustion chamber (14) by means of an injection conduit (15), means (17) for supplying combustion support substance into the combustion chamber (14) and means (18) for the removal of gaseous combustion products, means (26) for the selective emission of radiation onto the outer surface of the combustion chamber (14). The combustion chamber (14) is enclosed in a conversion chamber (20) within which are maintained sub-atmospheric pressure conditions, so that a substantial part of the heat developed by the combustion reaction is converted into electromagnetic radiation.
Abstract:
A luminous display for automotive satellite navigation systems includes a panel equipped with light sources, for example made up of LEDs, arranged in a pre-ordered configuration of discrete segments, which can be combined with one another according to paths corresponding to the representation of a plurality of encoded generally arrow-shaped pictograms, each of which indicates a respective direction to follow indicated by the navigation system. The path to follow is highlighted with respect to possible alternative paths represented by the pictograms.
Abstract:
An optical element and module for the projection of a light beam, and motor vehicle lamp including a plurality of such modules An optical element for the projection of a light beam comprises a solid body (1) of transparent material in which is formed a cavity (13) able to receive a light source (10), the cavity (13) extending along the principal axis (z) of the transparent body (1) and being delimited by a radially inner surface (3) and a terminal surface (2) of the transparent body (1). The surfaces (2, 3) are able to receive separate respective portions (I, II) of the light flux generated by the source (10). The transparent body (1) further has a radially outer surface (4) which surrounds the radially inner surface (3). The radially outer surface (4) reflects the portion of the light flux (I) coming from the radially inner surface (3) along a direction substantially parallel to the principal axis (z). The transparent body (1) has, on the opposite side, a central surface (6) and an annular surface (5) surrounding the central surface (6), able to receive that portion (II) of the light flux and the reflected portion of the light flux (I) respectively and to transmit these light flux portions (I, II) in directions having predetermined orientations with respect to the principal axis (z). At least one of the surfaces (2, 3, 5, 6) is rotationally asymmetric with respect to the principal axis (z) of the transparent body (1). The surfaces (2, 3, 5, 6) cooperate in such a way as to shape the overall light flux (I, II) emitted by the central and annular surfaces (6, 5) into a light intensity distribution having different divergences in two 25 directions perpendicular to one another and to the principal axis (z).
Abstract:
A module for projecting a light beam comprises: a light source suitable for producing the light beam, a substantially flat support surface on which the source is arranged in a manner such as to emit the light beam from only one side of the surface, and a curved reflecting surface which extends on one side of the support surface and has its concavity facing towards the support surface, and which is capable of reflecting the light beam originating from the source in a principal direction substantially parallel to the support surface of the source, the reflecting surface being divided into a plurality of reflecting areas suitable for receiving respective portions of the light beam. The plurality of reflecting areas comprises at least one area such that the portion of the light beam reflected by that area is substantially collimated in a vertical direction and has a small horizontal divergence α less than a first predetermined angular value α1, and at least one area which is designed in a manner such that the portion of the light beam reflected by that area has a wide horizontal divergence α greater than a second predetermined angular value α2. The area with wide horizontal divergence has a substantially elliptical horizontal cross-section parallel to the flat support surface with one of its foci substantially coinciding with the source and a substantially parabolic vertical cross-section with an axis substantially parallel to the flat support surface and with its focus substantially coinciding with the source.
Abstract:
A module for projecting a light beam comprises: a light source suitable for producing the light beam, a substantially flat support surface on which the source is arranged in a manner such as to emit the light beam from only one side of the surface, and a curved reflecting surface which extends on one side of the support surface and has its concavity facing towards the support surface, and which is capable of reflecting the light beam originating from the source in a principal direction substantially parallel to the support surface of the source, the reflecting surface being divided into a plurality of reflecting areas suitable for receiving respective portions of the light beam. The plurality of reflecting areas comprises at least one area such that the portion of the light beam reflected by that area is substantially collimated in a vertical direction and has a small horizontal divergence α less than a first predetermined angular value α1, and at least one area which is designed in a manner such that the portion of the light beam reflected by that area has a wide horizontal divergence α greater than a second predetermined angular value α2. The area with wide horizontal divergence has a substantially elliptical horizontal cross-section parallel to the flat support surface with one of its foci substantially coinciding with the source and a substantially parabolic vertical cross-section with an axis substantially parallel to the flat support surface and with its focus substantially coinciding with the source.