Abstract:
An active matrix image sensing panel includes a substrate and an image sensing pixel. The image sensing pixel is disposed on the substrate and includes a data line, a first thin film transistor (TFT) device and a second TFT device. The first TFT device includes a first electrode, a second electrode and a first gate electrode. The second electrode is coupled to the data line through a first via. The second TFT device includes a third electrode, a fourth electrode and a second gate electrode. The fourth electrode is electrically connected to the data line through a second via. The second electrode and the fourth electrode are connected with each other and overlap the data line.
Abstract:
The present disclosure relates to a method of fabricating a capacitive touch pane where a plurality of groups of first conductive patterns are formed along a first direction, a plurality of groups of second conductive patterns are formed along a second direction, and a plurality of connection components are formed on a substrate. Each first conductive pattern is electrically connected to another adjacent first conductive pattern in the same group by each connection component and each group of the second conductive patterns is interlaced with and insulated from each group of the first conductive patterns. Next, a plurality of curved insulation mounds are formed to cover the first connection components. Then, a plurality of bridge components are formed to electrically connect each second conductive pattern with another adjacent second conductive pattern in the same group.
Abstract:
An optical multi-layer structure for a flat panel display device is provided. The optical multi-layer structure includes a first optical layer, a second optical layer, a surface strengthening layer, and an adhesive layer. The first optical layer converts a light into a first polarized light. The second optical layer is disposed on the first optical layer and converts the first polarized light into a second polarized light. The surface strengthening layer is disposed on the second optical layer. The adhesive layer is disposed between the second optical layer and the surface strengthening layer, and is in direct contact with the second optical layer and the surface strengthening layer. A flat panel display device having the optical multi-layer structure is also disclosed.
Abstract:
A method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.
Abstract:
A light-emitting module includes a light-guiding plate, a plurality of light-guiding elements and a light-emitting unit. The light-guiding plate can guide the direction of light, and has at least a light input surface and two opposite flat surfaces. The light-guiding elements are disposed at one of the surfaces of the light-guiding plate. By viewing along a direction perpendicular to the surfaces, the shape of each of the light-guiding elements is curve shape with at least one inflection point. The light-emitting unit is disposed adjacent to the light input surface of the light-guiding plate. The light emitted by the light-emitting unit enters the light-guiding plate, is guided by the light-guiding plate and the light-guiding elements, and is outputted through one of the surfaces of the light-guiding plate in an alternating arrangement of bright and dark zones. The invention also discloses a display apparatus and the light-guiding plate.
Abstract:
A light-emitting module comprises a light-guiding plate, a plurality of light-guiding elements and a light-emitting unit. The light-guiding plate guides the direction of the light and includes at least a light input surface and two opposite side surfaces. The light-guiding elements e disposed on one of the side surfaces of the light-guiding plate, and disposed corresponding to pixels respectively. The overlooking area of each light-guiding element is larger than zero and less than that of the pixel corresponding to the light-guiding element, by viewing along a direction perpendicular to the side surface. The light-emitting unit is disposed on the light input surface. The light emitted by the light-emitting unit enters the light-guiding plate, and then, by the guiding of the light-guiding plate and the light-guiding elements, is outputted through one of the side surfaces of the light-guiding plate in an alternate form of bright and dark zones.
Abstract:
A pixel driving circuit is provided, including first, second, third, fourth, and fifth switching devices and first and second capacitors. The first switching device has a first terminal coupled to a first power source voltage, and a control terminal coupled to a first scan signal line. The second switching device has a first terminal coupled to a second terminal of the first switching device, a second terminal coupled to a first node and an emitting device, and a control terminal coupled to a second node. The third switching device has a first terminal coupled between the first terminal of the second switching device and a second terminal of the first switching device, a second terminal coupled to the second node, and a control terminal coupled to a second scan signal line.
Abstract:
A liquid crystal display device includes: a first substrate; a second substrate spaced apart from the first substrate; and a plurality of liquid crystal molecules disposed between the first and second substrates. The first substrate includes a transparent substrate, an insulator layer formed on a surface of the transparent substrate and formed with a plurality of grooves, and a pixel electrode formed on a surface of the insulator layer and formed with a plurality of electrode slits.
Abstract:
A composite layer structure used in a touch display device is disclosed. The composite layer structure comprises a matrix material, a non-conductive metal layer and a transparent electrical-conductive layer. The non-conductive metal layer is disposed on the matrix material. The non-conductive metal layer and the transparent electrical-conductive layer are formed a stacked structure.
Abstract:
An embodiment of the invention provides a manufacturing method of a thin-film transistor includes: providing a substrate; sequentially forming a gate electrode, a gate insulating layer, and an active layer on the substrate; forming an insulating metal oxide layer covering the active layer, wherein the insulating metal oxide layer including a metal oxide of a first metal; forming a metal layer covering the active layer, wherein the metal layer includes a second metal; forming a source electrode and a drain electrode on the metal layer with a trench separating therebetween; removing the metal layer exposed by the trench; and performing an annealing process to the metal layer and the insulating metal oxide layer, such that the metal layer reacts with the insulating metal oxide layer overlapping the metal layer to form a conducting composite metal oxide layer including the first metal and the second metal.