Abstract:
Methods of forming a semiconductor device include forming a trench mask pattern on a semiconductor substrate having active regions and device isolation regions. A thermal oxidation process is performed using the trench mask pattern as a diffusion mask to form a thermal oxide layer defining a convex upper surface of the active regions. The thermal oxide layer and the semiconductor substrate are etched using the trench mask pattern as an etch mask to form trenches defining convex upper surfaces of the active regions. The trench mask pattern is removed to expose the convex upper surfaces of the active regions. Gate patterns are formed extending over the active regions.
Abstract:
A method for fabricating a semiconductor device having fine contact holes is exemplarily disclosed. The method includes forming an isolation layer defining active regions on a semiconductor substrate. An interlayer dielectric layer is formed on the semiconductor substrate having the isolation layer. First molding patterns are formed on the interlayer dielectric layer. Second molding patterns positioned between the first molding patterns and spaced apart therefrom are also formed. A mask pattern surrounding sidewalls of the first and second molding patterns is formed. Openings are formed by removing the first and second molding patterns. Contact holes are formed by etching the interlayer dielectric layer using the mask pattern as an etching mask.
Abstract:
A method for fabricating a semiconductor device having fine contact holes is exemplary disclosed. The method includes forming an isolation layer defining active regions on a semiconductor substrate. An interlayer dielectric layer is formed on the semiconductor substrate having the isolation layer. First molding patterns are formed on the interlayer dielectric layer. Second molding patterns positioned between the first molding patterns and spaced apart therefrom are also formed. A mask pattern surrounding sidewalls of the first and second molding patterns is formed. Openings are formed by removing the first and second molding patterns. Contact holes are formed by etching the interlayer dielectric layer using the mask pattern as an etching mask.
Abstract:
In a method of forming a semiconductor device, a feature layer is provided on a substrate and a mask layer is provided on the feature layer. A portion of the mask layer is removed in a first region of the semiconductor device where fine features of the feature layer are to be located, the mask layer remaining in a second region of the semiconductor device where broad features of the feature layer are to be located. A mold mask pattern is provided on the feature layer in the first region and on the mask layer in the second region. A spacer layer is provided on the mold mask pattern in the first region and in the second region. An etching process is performed to etch the spacer layer so that spacers remain at sidewalls of pattern features of the mold mask pattern, and to etch the mask layer in the second region to provide mask layer patterns in the second region. The feature layer is etched using the mask layer patterns as an etch mask in the second region and using the spacers as an etch mask in the first region to provide a feature layer pattern having fine features in the first region and broad features in the second region.
Abstract:
Provided are a method of forming patterns for a semiconductor device in which a pattern density is doubled by performing double patterning in a part of a device region while patterns having different widths are being simultaneously formed, and a semiconductor device having a structure to which the method is easily applicable. The semiconductor device includes a plurality of line patterns extending parallel to each other in a first direction. A plurality of first line patterns are alternately selected in a second direction from among the plurality of line patterns and each have a first end existing near the first side. A plurality of second line patterns are alternately selected in the second direction from among the plurality of line patterns and each having a second end existing near the first side. The first line patterns alternate with the second line patterns and the first end of each first line pattern is farther from the first side than the second end of each second line pattern.
Abstract:
A first mask layer pattern including a plurality of parallel line portions is formed on an etch target layer on a semiconductor substrate. A sacrificial layer is formed on the first mask layer pattern and portions of the etch target layer between the parallel line portions of the first mask layer pattern. A second mask layer pattern is formed on the sacrificial layer, the second mask layer pattern including respective parallel lines disposed between respective adjacent ones of the parallel line portions of the first mask layer pattern, wherein adjacent line portions of the first mask layer pattern and the second mask layer pattern are separated by the sacrificial layer. A third mask layer pattern is formed including first and second portions covering respective first and second ends of the line portions of the first mask layer pattern and the second mask layer pattern and having an opening at the line portions of the first and second mask layer patterns between the first and second ends. The sacrificial layer and the etch target layer are etched using the third mask layer pattern, the first mask layer pattern and the second mask layer pattern as a mask to thereby form a plurality of parallel trenches in the etch target layer between the line portions of the first and second mask layer patterns. Conductive lines may be formed in the trenches.
Abstract:
A method of forming fine patterns of a semiconductor device, in which a plurality of conductive lines formed in a cell array region are integrally formed with contact pads for connecting the conductive lines to a peripheral circuit. In this method, a plurality of mold mask patterns, each including a first portion extending in a first direction and a second portion which is integrally formed with the first portion and extends in a second direction, are formed within a cell block on a substrate comprising a film which is to be etched. A first mask layer covering sidewalls and an upper surface of each of the plurality of mold mask patterns is formed on the substrate. First mask patterns are formed by partially removing the first mask layer so that a first area of the first mask layer remains and a second area of the first mask layer is removed. The first area of the first mask layer covers sidewalls of adjacent mold mask patterns from among the plurality of mold mask patterns by being located between the adjacent mold mask patterns, and the second area of the first mask layer covers portions of the sidewalls of the plurality of mold mask patterns, the portions corresponding to an outermost sidewall of a mold mask pattern block.
Abstract:
A method of fabricating a semiconductor device facilitates the forming of a conductive pattern of features having different widths. A conductive layer is formed on a substrate, and a mask layer is formed on the conductive layer. First spaced apart patterns are formed on the mask layer and a second pattern including first and second parallel portion is formed beside the first patterns on the mask layer. First auxiliary masks are formed over ends of the first patterns, respectively, and a second auxiliary mask is formed over the second pattern as spanning the first and second portions of the second pattern. The mask layer is then etched to form first mask patterns below the first patterns and a second mask pattern below the second pattern. The first and second patterns and the first and second auxiliary masks are removed. The conductive layer is then etched using the first and second mask patterns as an etch mask.
Abstract:
In some embodiments, a semiconductor device includes first bit lines connected to respective first contacts. Spacers are disposed on sidewalls of the first bit lines. A second bit line is self-alignedly disposed between adjacent spacers, and a second contact is self-aligned with and connected to the second bit line.
Abstract:
A semiconductor device and a method of manufacturing the semiconductor device maintain an insulating distance between contact plugs and wiring lines formed on the contact plugs by using an etch mask pattern for forming contact holes. The device comprises a substrate comprising a plurality of conductive areas; an inter-layer insulating layer on the substrate having a plurality of contact holes through which the conductive areas are exposed; a first insulating layer covering the top surface of the inter-layer insulating layer; a plurality of contact plugs respectively connected to the plurality of conductive areas through the plurality of contact holes, the plurality of contact plugs having top surfaces a distance from each of which to a top surface of the substrate is less than a distance from the top surface of the inter-layer insulating layer to the top surface of the substrate; a plurality of ring-shaped insulating spacers covering inner sidewalls of the inter-layer insulating layer, inner sidewalls of the first insulating layer, and outer edge areas of top surfaces of the contact plugs so as to expose center areas of the top surfaces of the contact plugs in the contact holes; and a plurality of wiring lines above the first insulating layer and on the insulating spacers and respectively electrically connected to the plurality of contact plugs.