Abstract:
Systems and methods described herein for performing incremental register checkpointing may employ a special register to indicate which registers have already been checkpointed. This register may include one bit per register. These systems may also include a special pointer register whose value identifies a location in user memory or in dedicated on-chip storage at which a copy of a register's value should be saved by a checkpointing operation. Only registers modified during speculative execution or execution of a transaction may be checkpointed (e.g., when register modifying instructions are encountered) and subsequently restored (e.g., due to misspeculation or transaction abort), rather than all of the registers of the processor. Each register may be checkpointed at most once for a given speculative episode or atomic transaction. Setting a bit in the special register may prevent checkpointing of the corresponding register. Setting all of the bits in the special register may disable checkpointing.
Abstract:
Systems and methods for implementing and using nonblocking zero-indirection software transactional memory (NZSTM) are disclosed. NZSTM systems implement object-based software transactional memory that eliminates all levels of indirection except in the uncommon case of a conflict with an unresponsive thread. Shared data is co-located with a header in an NZObject, and is addressable at a fixed offset from the header. Conflicting transactions are requested to abort themselves without being forced to abort. NZObjects are modified in place when there are no conflicts, and when a conflicting transaction acknowledges the abort request. In the uncommon case, NZObjects are inflated to introduce a locator and some levels of indirection, and are restored to their un-inflated form following resolution of the conflict. In some embodiments, transactions are executed using best effort hardware transactional memory if it is available and effective, and software transactional memory if not, yielding a hybrid transactional memory system, NZTM.
Abstract:
Systems and methods described herein for performing incremental register checkpointing may employ a special register to indicate which registers have already been checkpointed. This register may include one bit per register. These systems may also include a special pointer register whose value identifies a location in user memory or in dedicated on-chip storage at which a copy of a register's value should be saved by a checkpointing operation. Only registers modified during speculative execution or execution of a transaction may be checkpointed (e.g., when register modifying instructions are encountered) and subsequently restored (e.g., due to misspeculation or transaction abort), rather than all of the registers of the processor. Each register may be checkpointed at most once for a given speculative episode or atomic transaction. Setting a bit in the special register may prevent checkpointing of the corresponding register. Setting all of the bits in the special register may disable checkpointing.
Abstract:
One embodiment of the present invention provides a system that facilitates avoiding locks by speculatively executing critical sections of code. During operation, the system allows a process to speculatively execute a critical section of code within a program without first acquiring a lock associated with the critical section. If the process subsequently completes the critical section without encountering an interfering data access from another process, the system commits changes made during the speculative execution, and resumes normal non-speculative execution of the program past the critical section. Otherwise, if an interfering data access from another process is encountered during execution of the critical section, the system discards changes made during the speculative execution, and attempts to re-execute the critical section.
Abstract:
One embodiment of the present invention provides a system that facilitates avoiding locks by speculatively executing critical sections of code. During operation, the system allows a process to speculatively execute a critical section of code within a program without first acquiring a lock associated with the critical section. If the process subsequently completes the critical section without encountering an interfering data access from another process, the system commits changes made during the speculative execution, and resumes normal non-speculative execution of the program past the critical section. Otherwise, if an interfering data access from another process is encountered during execution of the critical section, the system discards changes made during the speculative execution, and attempts to re-execute the critical section.
Abstract:
A conflict resolution technique provides consistency such that all conflicts can be detected by at least one of the conflicting requestors if each node monitors all requests after that node has made its own request. If a line is in the Exclusive, Modified or Forward state, conflicts are resolved at the node holding the unique copy. The winner of the conflict resolution, and possibly the losers, report the conflict to the home node, which pairs conflict reports and issues forwarding instructions to assure that all requesting nodes eventually receive the requested data. If a requested cache line is either uncached or present only in the Shared state, the home node provides a copy of the cache node and resolves conflicts. In one embodiment, a blackout period after all responses until an acknowledgement message has been received allows all conflicting nodes to be aware of conflicts in which they are involved.
Abstract:
A hybrid Single-Compare-Single-Store (SCSS) operation may exploit best-effort hardware transactional memory (HTM) for good performance in the case that it succeeds, and may transparently resort to software-mediated transactions if the hardware transactional mechanisms fail. The SCSS operation may compare a value in a control location to a specified expected value, and if they match, may store a new value in a separate data location. The control value may include a global lock, a transaction status indicator, and/or a portion of an ownership record, in different embodiments. If another transaction in progress owns the data location, the SCSS operation may abort the other transaction or may help it complete by copying the other transactions' write set into its own right set before acquiring ownership. A hybrid SCSS operation, which is usually nonblocking, may be applied to building software transactional memories (STMs) and/or hybrid transactional memories (HyTMs), in some embodiments.
Abstract:
Use of an import cache and/or an export directory with an agent within to respond to requests for data. The import cache stores data that has been imported through the agent. The export directory stores information related to data that has been exported through the agent. Because the import cache and the export directory only store data that has passed through the agent, not all data transferred within a system are tracked by a single import cache or export directory.
Abstract:
The cache coherency protocol described herein can be used to maintain a virtual model of a system, where the virtual model does not change as the system configuration changes. In general, the virtual model is based on the assumption that each node in the system can directly communicate with some number of other nodes in the system. In one embodiment, for each cache line, the address of the cache line is used to designate a node as the “home” node and all other nodes as “peer” nodes. The protocol specifies one set of messages for communication with the line's home node and another set of messages for communication with the line's peer nodes.
Abstract:
A conflict resolution technique provides consistency such that all conflicts can be detected by at least one of the conflicting requestors if each node monitors all requests after that node has made its own request. If a line is in the Exclusive, Modified or Forward state, conflicts are resolved at the node holding the unique copy. The winner of the conflict resolution, and possibly the losers, report the conflict to the home node, which pairs conflict reports and issues forwarding instructions to assure that all requesting nodes eventually receive the requested data. If a requested cache line is either uncached or present only in the Shared state, the home node provides a copy of the cache node and resolves conflicts. In one embodiment, a blackout period after all responses until an acknowledgement message has been received allows all conflicting nodes to be aware of conflicts in which they are involved.