Abstract:
A method of fabricating polysilicon lines and polysilicon gates, the method of including: providing a substrate; forming a dielectric layer on a top surface of the substrate; forming a polysilicon layer on a top surface of the dielectric layer; implanting the polysilicon layer with N-dopant species, the N-dopant species about contained within the polysilicon layer; implanting the polysilicon layer with a nitrogen containing species, the nitrogen containing species essentially contained within the polysilicon layer.
Abstract:
An integrated circuit, a method and a system for designing and a method fabricating the integrated circuit. The method including: (a) generating a photomask level design of an integrated circuit design of the integrated circuit, the photomask level design comprising a multiplicity of integrated circuit element shapes; (b) designating regions of the photomask level design between adjacent integrated circuit element shapes, the designated regions large enough to require placement of fill shapes between the adjacent integrated circuit elements based on fill shape rules, the fill shapes not required for the operation of the integrated circuit; and (c) placing one or more monitor structure shapes of a monitor structure in at least one of the designated regions, the monitor structure not required for the operation of the integrated circuit.
Abstract:
A novel image sensor cell structure and method of manufacture. The imaging sensor comprises a substrate, a gate comprising a dielectric layer and gate conductor formed on the dielectric layer, a collection well layer of a first conductivity type formed below a surface of the substrate adjacent a first side of the gate conductor, a pinning layer of a second conductivity type formed atop the collection well at the substrate surface, and a diffusion region of a first conductivity type formed adjacent a second side of the gate conductor, the gate conductor forming a channel region between the collection well layer and the diffusion region. Part of the gate conductor bottom is recessed below the surface of the substrate. Preferably, a portion of the gate conductor is recessed at or below a bottom surface of the pinning layer to a depth such that the collection well intersects the channel region.
Abstract:
A field effect transistor is formed with a sub-lithographic conduction channel and a dual gate which is formed by a simple process by starting with a silicon-on-insulator wafer, allowing most etching processes to use the buried oxide as an etch stop. Low resistivity of the gate, source and drain is achieved by silicide sidewalls or liners while low gate to junction capacitance is achieved by recessing the silicide and polysilicon dual gate structure from the source and drain region edges.
Abstract:
A method for defect diagnosis of semiconductor chip. The method comprises the steps of (a) identifying M design structures and N physical characteristics of the circuit design, wherein M and N are positive integers, wherein each design structure of the M design structures is testable as to pass or fail, and wherein each physical characteristic of the N physical characteristics is present in at least one design structure of the M design structures; (b) for each design structure of the M design structures of the circuit design, determining a fail rate and determining whether the fail rate is high or low; and (c) if every design structure of the M design structures in which a physical characteristic of the N physical characteristics is present has a high fail rate, then flagging the physical characteristic as being likely to contain at least a defect.
Abstract:
The present invention provides a vertical memory device formed in a silicon-on-insulator substrate, where a bitline contacting the upper surface of the silicon-on-insulator substrate is electrically connected to the vertical memory device through an upper strap diffusion region formed through a buried oxide layer. The upper strap diffusion region is formed by laterally etching a portion of the buried oxide region to produce a divot, in which doped polysilicon is deposited. The upper strap region diffusion region also provides the source for the vertical transistor of the vertical memory device. The vertical memory device may also be integrated with a support region having logic devices formed atop the silicon-on-insulator substrate.
Abstract:
A device having a resistor and a heater disposed proximate to the resistor and capable of raising the temperature of the resistor. The device further includes a dieletric disposed between the heater and the resistor and a tuner electrically coupled to the resistor. The heater adjusts the resistance of the resistor in response to the tuner.
Abstract:
Disclosed is a method of fabricating a lateral semiconductor device, comprising: providing a substrate, having at least an upper silicon portion forming at least one first dopant type region and at least one second dopant type region in the upper portion of the substrate, at least one of the first dopant type regions abutting at least one of the second dopant type regions and thereby forming at least one PN junction; and forming at least one protective island on a top surface of the upper silicon portion, the protective island extending the length of the PN junction and overlapping a portion of the first dopant type region and a portion of an abutting second dopant type region.
Abstract:
Off-current is not compromised in a field effect transistor having a gate length less than 100 nanometers in length by maintaining the conduction channel width one-half to one-quarter of the gate length and locating the gate on at least two sides of the conduction channel and to thus create a full depletion device. Such a narrow conduction channel is achieved by forming a trough at minimum lithographic dimensions, forming sidewalls within the trough and etching the gate structure self-aligned with the sidewalls. The conduction channel is then epitaxially grown from the source structure in the trough such that the source, conduction channel and drain region are a unitary monocrystalline structure.
Abstract:
A semiconductor device is presented which is directed to a method of forming embedded DRAM and logic devices, where the DRAM devices are formed in bulk, single crystalline semiconductor regions and logic devices are formed in silicon-on-insulator (“SOI”) regions and where buried, doped glass is used as a mask to form deep trenches for storage in the bulk region. The resulting structure is also disclosed.