摘要:
A protective circuit for protecting internal circuits of semiconductor integrated circuits (ICs) from ElectroStatic Discharges (ESD) into a voltage conduit of a semiconductor IC. The protective circuit is coupled in parallel with the internal circuit of the semiconductor IC such that the protective circuit and the internal circuit are each coupled to a first voltage conduit at a first reference voltage at one end and to a second voltage conduit at a second reference voltage at another end. The protective circuit includes an ESD protection device (or devices) for channeling an ESD discharge from the first voltage conduit through the protective circuit to the second voltage conduit. The protective circuit also includes a control circuit for turning "on" (e.g. operating in a low impedance state) the ESD protection device during the occurrence of the ESD discharge into the first voltage conduit. Furthermore, the control circuit turns "on" the ESD protection device before other devices in the internal circuit are damaged as a result of the ESD discharge. Therefore, by channeling the ESD discharge through the ESD protection circuit when an ESD discharge is recognized, but before other devices in the internal circuit are damaged, the ESD protection circuit prevents the internal circuit from being damaged during an ESD discharge.
摘要:
Apparatus for integrated capacitors and associated methods are disclosed. In one embodiment, an integrated capacitor includes a first plurality of metal members that are fabricated using a first plurality of metal layers, and are oriented in a first orientation. The integrated capacitor also includes a second plurality of metal members that are fabricated using a second plurality of metal layers. The second plurality of metal members are oriented transverse to the first orientation. The integrated capacitor further includes a third plurality of metal members, which are fabricated using a third plurality of metal layers, and are oriented in the first orientation.
摘要:
A communications path may be formed from intertwined conductive paths. The intertwined conductive paths may be formed from one or more layers of conductive material in the dielectric stack of an integrated circuit. The dielectric stack may include metal layers, via layers, and a pad layer. The conductive paths may be formed from patterned conductive structures in the metal and pad layers. Vias in the via layers may be used to connect metal structures from multiple dielectric stack layers. The communications path may have segments in which the conductive paths run parallel to each other and may have cross-over regions in which the conductive paths cross one another without electrically connecting so that the paths twist about each other along their lengths. The communications path may be used to form a differential transmission line pair that distributes signals such as two-phase clock signals.
摘要:
One embodiment relates to a buffered transistor device. The device includes a buffered vertical fin-shaped structure formed in a semiconductor substrate. The vertical fin-shaped structure includes at least an upper semiconductor layer, a buffer region, and at least part of a well region. The buffer region has a first doping polarity, and the well region has a second doping polarity which is opposite to the first doping polarity. At least one p-n junction that at least partially covers a horizontal cross section of the vertical fin-shaped structure is formed between the buffer and well regions. Other embodiments, aspects, and features are also disclosed.
摘要:
An electrostatic discharge (ESD) protection circuit includes a first array of transistors, having source and drain doped with a first type of material, arranged in parallel in a first block, and a second array of transistors, having source and drain doped with the first type of material, arranged in parallel in a second block. The ESD protection circuit also includes an active region between the first and second array of transistors doped with a second type of material that is complementary to the first type of material.
摘要:
Hardened programmable logic devices are provided with programmable circuitry. The programmable circuitry may be hardwired to implement a custom logic circuit. Generic fabrication masks may be used to form the programmable circuitry and may be used in manufacturing a product family of hardened programmable logic devices, each of which may implement a different custom logic circuit. Custom fabrication masks may be used to hardwire the programmable circuitry to implement a specific custom logic circuit. The programmable circuitry may be hardwired in such a way that signal timing characteristics of a hardened programmable logic device that implements a custom logic circuit may match the signal timing characteristics of a programmable logic device that implements the same custom logic circuit using configuration data.
摘要:
A shielding structure comprises first and second comb-like structures defined in a first metallization layer on an integrated circuit, each comb-like structure comprising a plurality of teeth, the teeth of each comb-like structure extending toward the other comb-like structure; a first plurality of electrically conducting vias extending upward from the first comb-like structure; a second plurality of electrically conducting vias extending upward from the second comb-like structure; first and second planar structures in a second metallization layer above the first metallization layer; a third plurality of electrically conducting vias extending downward from the first planar structure toward the first plurality of electrically conducting vias; and a fourth plurality of electrically conducting vias extending downward from the second planar structure toward the second plurality of electrically conducting vias. The first and second comb-like structures, the first and second planar structures and the first, second, third, and fourth electrically conducting vias all being at substantially the same potential, preferably ground. In one embodiment, one or more signal lines are located in the second metallization layer between the first and second planar structures; and in another embodiment they are located in a third metallization layer between the first and second metallization layers.
摘要:
A structure for measuring both interconnect resistance and capacitance. The structure comprises a plurality of metallic interconnects, a first circuit for measuring capacitance charging current at a first interconnect and a second circuit for measuring the voltage drop between two positions at a second interconnect. The first circuit includes two electrically connected pseudo-inverters. Two control signals are fed into the two pseudo-inverters such that their associated capacitances are charged and discharged periodically. The first interconnect capacitance is determined by measuring the difference of charging currents between the two pseudo-inverters. A constant current flows through the second circuit and the interconnect resistance is determined by the voltage drop and the constant current.
摘要:
A multi-segment capacitor fabricated on a semiconductor substrate includes M×N capacitor segments arranged in a matrix of M rows and N columns. Each capacitor segment includes two groups of conductive fingers preferably made of metal wires. The metal wire fingers are distributed within multiple metal layers in such a manner that two neighboring parallel metal wire fingers within a particular metal layer are electrically insulated and connected to different terminals of the capacitor. Further, at least the longitudinal axes of the parallel metal wire fingers within two different metal layers are not parallel to each other within the same capacitor segment.
摘要:
This relates to a sense circuit to detect an ESD event and turn on an SCR to discharge the ESD event. In a preferred embodiment, the circuit comprises a resistor in the signal path to/from an I/O buffer, a sense circuit in parallel with the resistor, an SCR connected between ground and a node between the resistor and the I/O pad, and an I/O buffer connected between ground and the other end of the resistor. When the sense circuit detects a significant voltage drop across the resistor, it injects current into the SCR, thereby turning on the SCR and discharging the ESD event.