Abstract:
A wheel suspension for motor vehicles includes at least one upper control arm, in particular an upper transverse control arm, and at least one lower control arm, in particular a lower transverse control arm, which are hinged on the body of the motor vehicle suspension on the one hand, and on the other hand are connected to a wheel carrier, thus forming a preferred, substantially vertical steering axle. At least one suspension spring and at least one shock absorber are provided. The at least one suspension spring and/or the at least one shock absorber are designed to be rotatable.
Abstract:
Method for determining geometric data for parking processes of vehicles, wherein the lateral distance between the vehicle and a curb is measured several times successively by means of a distance sensor attached to the vehicle as the vehicle is driven by the parking space. The angle of the longitudinal axis of a vehicle and the curb is ascertained by determining a sideways movement angle between the present longitudinal direction of the vehicle and a preset longitudinal direction, which angle results from the sideways movement of the vehicle as it is driven along, by determining a curb angle between the preset longitudinal direction and the curb, which angle results from the course of the curb contour, and by determining the angle between the present longitudinal axis of the vehicle and the curb by adding the angle of sideways movement and the curb angle.
Abstract:
A method for operating a motor vehicle having at least one electric drive component which is cooled via at least one coolant circuit which is coupled thermally to a refrigerant circuit. In a first operating mode of the motor vehicle, an inlet temperature of a coolant of the at least one coolant circuit is set to a first value by active cooling by means of the refrigerant circuit. In a second operating mode, in particular a sports operating mode of the motor vehicle, the inlet temperature is lowered with respect to the first operating mode. As a result, more pronounced cooling of the components is made possible in the second operating mode, as a result of which the maximum driving power of the motor vehicle is increased.
Abstract:
A wheel suspension for motor vehicles includes at least one wheel guide element which is articulated both on an auxiliary frame that can be connected to the body of the motor vehicle and on a wheel carrier, a suspension and damping system as well as a steering system for the wheel. To achieve a universally applicable wheel suspension using identical parts, the auxiliary frame for each wheel suspension is designed as an independent modular frame, on which the a wheel guide element(s) is/are articulated, on which the suspension and damping system is supported, and on which at least one actuator is arranged directly or indirectly for actuating the suspension and damping system and/or the steering system and thus for setting predetermined wheel-specific wheel guidance and/or steering parameters.
Abstract:
In a method for the operation of a transverse guiding driver assist system of a motor vehicle, a road banking information is ascertained as a function of a change in a deviation of a transverse course of a road surface from a horizontal. A future road course is determined from environmental data and/or operating data of a motor vehicle, using the road banking information. A lateral track deviation is determined as a result of a change of a road banking, using the road banking information. At least one transverse guiding parameter is established from the future road course and the road banking information to determine a steering intervention. The lateral track deviation is then corrected by using the transverse guiding parameter.
Abstract:
A method for adjusting the spatial position of the roll axis of a motor vehicle includes: a) defining a desired spatial position of the roll axis; b) determining a transverse acceleration of the motor vehicle; c) defining a desired transverse tilt of the motor vehicle and determining a desired transverse offset of the motor vehicle as a function of the transverse acceleration, so that the roll axis is moved into the desired position when the desired transverse tilt and the desired transverse offset are adjusted; d) adjusting a first actuator of an active chassis system of the motor vehicle, so that the motor vehicle assumes the desired transverse tilt determined in step c); and adjusting a second actuator to influence the transverse movement of the motor vehicle, so that the motor vehicle assumes the desired transverse offset determined in step c).
Abstract:
The invention relates to a wheel suspension for motor vehicles, with at least one wheel-side support member which pivotally supports one vehicle wheel and at least one axle-side support member, between which at least one intermediate element is connected, in particular an actuator for setting the track angle and/or the camber angle (δ, ε) of the vehicle wheel. According to the invention the wheel-side support member and the axle-side support member are pressed into contact with one another by a pretensioning means with a pretensioning force (FV).
Abstract:
A wheel suspension for a motor vehicle includes a support element on the wheel-side rotatably mounting a vehicle wheel and a carrier element on the axle-side, wherein the carrier element on the wheel-side can be adjusted for setting a toe and/or camber angle relative to the support element on the axle-side, wherein the carrier elements on the axle-side and on the wheel-side are coupled to a universal joint in which webs of the carrier elements on the wheel-side and on the axle-side are articulated on a gimbal ring element by means of bearing points. The webs of the support elements are articulated on the gimbal ring element at the bearing points by means of ball joints.
Abstract:
A wheel suspension for motor vehicles includes at least one wheel guide element which is articulated both on an auxiliary frame that can be connected to the body of the motor vehicle and on a wheel carrier, a suspension and damping system as well as a steering system for the wheel. To achieve a universally applicable wheel suspension using identical parts, the auxiliary frame for each wheel suspension is designed as an independent modular frame, on which the a wheel guide element(s) is/are articulated, on which the suspension and damping system is supported, and on which at least one actuator is arranged directly or indirectly for actuating the suspension and damping system and/or the steering system and thus for setting predetermined wheel-specific wheel guidance and/or steering parameters.
Abstract:
The invention relates to a method for producing different vehicle models in which in a comfort-oriented version a vehicle wheel is pivoted in a wheel guiding element of a wheel suspension. According to the invention, in a model with enhanced dynamics of vehicle motion, between the wheel guiding element and the vehicle wheel in the axial direction, an actuator is interposed for adjusting the camber and/or track of the vehicle wheel.