Abstract:
A wheel suspension for motor vehicles includes at least one upper control arm, in particular an upper transverse control arm, and at least one lower control arm, in particular a lower transverse control arm, which are hinged on the body of the motor vehicle suspension on the one hand, and on the other hand are connected to a wheel carrier, thus forming a preferred, substantially vertical steering axle. At least one suspension spring and at least one shock absorber are provided. The at least one suspension spring and/or the at least one shock absorber are designed to be rotatable.
Abstract:
A vehicle includes a chassis, a suspension system, and a steering system operably coupled to the chassis and to the suspension. The chassis includes a mounting member that has a first elongated slot. The suspension system includes a beam that is pivotally coupled to the mounting member. The steering system includes a first axle, a second axle, a tie bar that extends between first and second tie bar ends, and a slider. The first and second axles are pivotally coupled with respect to the beam. The tie bar is operably coupled to the first and second axles and includes a second elongated slot that is configured to overlie the first elongated slot. The slider is positioned in the first and second elongated slots, and is configured to move in the first and second elongated slots to select a ratio of the tilting of the mounting member to the steering of the first and second axles.
Abstract:
A saddle riding type vehicle capable of making turns by leaning a vehicle body includes a pair of rear wheels provided at opposite sides of the vehicle body, a pair of support mechanisms arranged to support the pair of rear wheels to be movable, independently of each other, up and down about a pivot axis relative to the vehicle body, an engine disposed forward of the pivot axis to produce a drive force, a differential mechanism arranged to distribute the drive force of the engine to the pair of rear wheels and to absorb a rotating speed difference between the pair of rear wheels at a time of making a turn, the differential mechanism including drive shafts arranged between the engine and the pivot axis, a pair of shaft drive mechanisms provided for the pair of rear wheels, respectively, and arranged to transmit the drive force of the differential mechanism to the pair of rear wheels, and a pair of constant velocity universal joints provided for the pair of shaft drive mechanisms, respectively, each including a pair of universal joints connected by a coupling yoke, the coupling yoke being located on the pivot axis, and the pair of universal joints being arranged in a positional relationship of point symmetry.
Abstract:
A suspension link for an axle of a motor vehicle includes first and second arms, with the first and second arms being laterally spaced and substantially parallel. A first end of each arm is coupled to the axle by a bushing. A second end of each arm is coupled to a motor vehicle frame by a frame bushing. A sway bar is rigidly mounted between the first and second arms substantially distal to the first ends of the first and second arms, proximate to the second ends and parallel to the axle.
Abstract:
An electric motor 10 and a reduction gear mechanism 11 are connected to each other by a flexible coupling 12, such as an Oldham's coupling, which is a power transmission mechanism. Also, a casing 11c of the reduction gear mechanism 11 is integrally structured together with a knuckle 5, which is an unsprung part of a vehicle, or mounted to the knuckle 5. Further, a motor case 10a of the electric motor 10 is mounted to a motor mounting member 4m provided on the lower part of a strut 4 for suspending the knuckle 5 through the medium of a shock absorbing mechanism 20 equipped with a spring member 21, a damper, and two guide members 23 for guiding the operating direction of the spring member 21 and the damper. An in-wheel motor system thus structured allows the mass of the motor 10 to act as the mass of a dynamic damper and thus features not only improved ground contact performance and riding comfort of a vehicle running on a rough road but also superior space efficiency.
Abstract:
Disclosed a suspension assembly for a rear two-axle road vehicle is in which a first stabilizer 42 for a driving axle 5 of the rear two-axle set is made less in stiffness than a second stabilizer 52 for a driven axle 6. Even if the vehicle runs onto a curbstone on only one-side rear wheels on the driving axle, the vehicle may steadily get away from the curbstone. The first stabilizer 42 for axle housing 13 supporting the driving axle 5 for rotation is designed so as to have stiffness less than that of the second stabilizer 52 for the axle housing 14 supporting the non-driving axle 6. The stiffness in the stabilizers may be varied, for example, by changing diameters of torsion-bar sections 43 mounted in the axle housings 13, 14 for rotating movement. Even under the road-handling condition where the vehicle runs onto the curbstone on only one side driving wheels on the driving axle 5, the other side driving wheels may be kept in firm engagement with the earth because the first stabilizer 42 is less in twisting moment.
Abstract:
A traction assist system for a vehicle having a tandem-axle system includes a drive axle and a non-drive axle attached to a suspension beam on opposite sides of a pivot about which the suspension beam is rotatable. A device selectively applies a force to the suspension beam on the side of the pivot at which the drive axle is attached, such that the suspension beam tends to rotate to provide a downward force on the drive axle. The device can also apply the downward force directly to the drive axle.
Abstract:
A traction assist system for a vehicle having a tandem-axle system includes a drive axle and a non-drive axle attached to a suspension beam on opposite sides of a pivot about which the suspension beam is rotatable. A device selectively applies a force to the suspension beam on the side of the pivot at which the drive axle is attached, such that the suspension beam tends to rotate to provide a downward force on the drive axle. The device can also apply the downward force directly to the drive axle.
Abstract:
A method for operating a motor vehicle which can be driven in at least two drive modes which differ from one another as to whether or not at least one wheel of the motor vehicle is driven is designed to increase the safety in the driving behavior when the drive mode changes, by adjusting a previously defined value which is assigned to the current drive mode for a variable that is related to a chassis device of the motor vehicle.
Abstract:
A motor vehicle can have multiple drive modes, for example rear wheel drive, four wheel drive, front wheel drive. Here, an active chassis device is used to make different adjustments, for example with respect to the toe-in angle and the camber angle, of a wheel or else with respect to wheel loads as a function of the drive load. As a result, the driving behaviour can be matched in each case in an optimum way to the drive mode, or conversely can be configured in such a way that changing the drive mode does not have a perceptible effect for the driver.