Abstract:
The present invention relates to a new method for increasing drought resistance of a plant. The method encompasses the impairment of the expression of a gene or genes in said plant. In comparison to a plant not manipulated to impair the expression of said gene(s), the plants display improved drought resistance. Also provided are plants and plant product that can be obtained by the method according to the invention.
Abstract:
The invention relates to a method for the high throughput identification of single nucleotide polymorphisms by performing a complexity reduction on two or more samples to yield two or more libraries, sequencing at least part of the libraries, aligning the identified sequences and determining any putative single nucleotide polymorphisms, confirming any putative single nucleotide polymorphism, generating detection probes for the confirmed single nucleotide polymorphisms, subjection a test sample to the same complexity reduction to provide a test library and screen the test library for the presence or absence of the single nucleotide polymorphisms using the detection probe.
Abstract:
The present invention relates to a new method for improving glyphosate resistance of a plant. The method encompasses providing one or more specific mutations in a specific nucleotide sequence in said plant. In comparison to a plant not manipulated according to the method, the plant obtained by the method displays (improved) glyphosate resistance. Also provided are a (transgenic) plant, including a seed thereof, and a plant product that can be obtained by the method according to the invention.
Abstract:
The invention relates to a method for the high throughput discovery, detection and genotyping of one or more genetic markers in one or more samples, comprising the steps of restriction endonuclease digest of DNA, adaptor-ligation, optional pre-amplification, selective amplification, pooling of the amplified products, sequencing the libraries with sufficient redundancy, clustering followed by identification of the genetic markers within the library and/or between libraries and determination of (co-)dominant genotypes of the genetic markers.
Abstract:
The invention relates to a method for the high throughput discovery, detection and genotyping of one or more genetic markers in one or more samples, comprising the steps of restriction endonuclease digest of DNA, adaptor-ligation, optional pre-amplification, selective amplification, pooling of the amplified products, sequencing the libraries with sufficient redundancy, clustering followed by identification of the genetic markers within the library and/or between libraries and determination of (co-)dominant genotypes of the genetic markers.
Abstract:
The disclosure provides an isolated nucleic acid molecule encoding a 7-epizingiberene synthase, a chimeric gene comprising said nucleic acid molecule, vectors comprising the same, as well as isolated 7-epizingiberene synthase proteins themselves. In addition, transgenic plants and plant cells comprising a gene encoding a 7-epizingiberene synthase, optionally integrated in its genome, and methods for making such plants and cells, are provided. Especially Solanaceae plants and plant parts (seeds, fruit, leaves, etc.) with enhanced insect pest resistance are provided.
Abstract:
The present invention relates to a high throughput method for the identification and detection of molecular markers wherein restriction fragments are generated and suitable adaptors comprising (sample-specific) identifiers are ligated. The adapter-ligated restriction fragments may be selectively amplified with adaptor compatible primers carrying selective nucleotides at their 3′ end. The amplified adapter-ligated restriction fragments are, at least partly, sequenced using high throughput sequencing methods and the sequence parts of the restriction fragments together with the sample-specific identifiers serve as molecular markers.
Abstract:
The current disclosure relates to the field of plants, in particular to the fields of plant breeding and plant genetics. More particular, the disclosure concerns inventive methodology that may be useful in improving plant properties. In particular the invention may be useful in removing linkage drag. Also provided are plant and plant parts obtained with the method disclosed herein.
Abstract:
Method for targeted alteration of a duplex acceptor DNA sequence in a plant cell protoplast, comprising combining the duplex acceptor DNA sequence with a donor mutagenic nucleobase, wherein the duplex acceptor DNA sequence contains a first DNA sequence and a second DNA sequence which is the complement of the first DNA sequence and wherein the donor mutagenic nucleobase comprises at least one mismatch with respect to the duplex acceptor DNA sequence to be altered, preferably with respect to the first DNA sequence, wherein the method further comprises a step of introducing the donor mutagenic nucleobase into the cell protoplasts using polyethylene glycol (PEG) mediated transformation and the use of PEG protoplast transformation for enhancing the rate of targeted mutagenesis.
Abstract:
The present invention provides for a method for producing an inbred plant comprising a first and second trait of interest in the L1-shoot meristem layer for use in producing a periclinal chimera plant, the inbred plant thus obtained, the use of said inbred plant for producing said periclinal chimera plant, a method for producing a periclinal chimera plant using said inbred plant, a periclinal chimera plant thus obtained, the use of said periclinal chimera plant in producing plant product and the plant product thus obtained.