Abstract:
Methods for chemical mechanical polishing (CMP) of semiconductor substrates, and more particularly to temperature control during such chemical mechanical polishing are provided. In one aspect, the method comprises polishing the substrate with a polishing surface during a polishing process to remove a portion of the conductive material, repeatedly monitoring a temperature of the polishing surface during the polishing process, and exposing the polishing surface to a rate quench process in response to the monitored temperature so as to achieve a target value for the monitored temperature during the polishing process.
Abstract:
In polishing a substrate having a layer of GST disposed over an underlying layer, during polishing, a non-polarized light beam is directed onto the layer of GST. The non-polarized light beam reflects from the first substrate to generate a reflected light beam having an infra-red component. A sequence of measurements of intensity of the infra-red component of the reflected light beam are generated, and, in a processor, a time at which the sequence of measurements exhibits a predefined feature is determined.
Abstract:
A method of multicast data transfer including accessing a source address to a source location of mapped memory which stores source data, accessing multiple destination addresses to corresponding destination locations of the mapped memory, and for each of at least one section of the source data, reading the section using the source address, storing the section into a local memory of a data transfer device, and writing the section from the local memory to each destination location in the mapped memory using the destination addresses. Separate source and destination attributes may be provided, so that the source and each destination may have different attributes for reading and storing data. The source and each destination may have any number of data buffers accessible by corresponding links provided in data structures supporting the data transfer. The source data may be divided into sections and handled section by section.
Abstract:
A multi-core system configured to execute a plurality of tasks and having a semaphore engine and a direct memory access (DMA) engine capable of selecting, by a task scheduler of a first core, a first task for execution by the first core. In response to a semaphore lock request, the task scheduler of the first core switches the first task to an inactive state and selects a next task for execution by the first core. After the semaphore engine acquires the semaphore lock of the first semaphore, a data transfer request is provided to the DMA engine. In response to the data transfer request, the DMA engine transfers data associated with the locked first semaphore to the entry of the workspace of the first core.
Abstract:
A communication channel controller includes a queue, a memory map, and a scheduler. The queue to store a first memory transfer request received at the communication channel controller. The memory map stores information to identify a memory address range to be associated with a memory. The scheduler to compare a source address of the first memory transfer in the queue to the memory address range in the memory map to determine whether the source address of the first memory transfer request targets the memory, and in response allocate the first memory transfer request to a first communication channel of a plurality of communication channels in response to the first communication channel having all of its outstanding memory transactions to a common source address bank and source address page as a source address bank and a source address page of the first memory transfer request.
Abstract:
A method of multicast data transfer including accessing a source address to a source location of mapped memory which stores source data, accessing multiple destination addresses to corresponding destination locations of the mapped memory, and for each of at least one section of the source data, reading the section using the source address, storing the section into a local memory of a data transfer device, and writing the section from the local memory to each destination location in the mapped memory using the destination addresses. Separate source and destination attributes may be provided, so that the source and each destination may have different attributes for reading and storing data. The source and each destination may have any number of data buffers accessible by corresponding links provided in data structures supporting the data transfer. The source data may be divided into sections and handled section by section.
Abstract:
Biocompatible, bioerodible sustained release implants and microspheres for intracameral or anterior vitreal placement include an anti-hypertensive agent and a biodegradable polymer effective to treat an ocular hypertensive condition (such as glaucoma) by relapsing therapeutic amount of the anti-hypertensive agent over a period of time between 10 days and 1 year.
Abstract:
A method and apparatus for temperature control for a chemical mechanical polishing process is provided. In one embodiment, the method comprises polishing the substrate with a surface of a polishing pad assembly, measuring a real-time temperature of the surface of the polishing pad assembly, determining whether the real-time temperature of the surface of the polishing pad assembly is within a predetermined processing temperature range, and contacting the surface of the polishing pad assembly with a pad conditioner to adjust the temperature of the surface of the polishing pad assembly to fall within the predetermined temperature range.
Abstract:
A method of chemical mechanical polishing includes bringing a substrate having a conductive layer disposed over a semiconductor wafer into contact with a polishing pad, generating relative motion between the substrate and the polishing pad, monitoring the substrate with an in-situ electromagnetic induction monitoring system as the conductive layer is polished to generate a sequence of signal values that depend on a thickness of the conductive layer, determining a sequence of thickness values for the conductive layer based on the sequence of signal values, and at least partially compensating for a contribution of conductivity of the semiconductor wafer to the signal values.
Abstract:
A method of controlling processing of a substrate includes generating, based on a signal from an in-situ monitoring system, first and second sequences of characterizing values indicative of a physical property of a reference zone and a control zone, respectively, on a substrate. A reference zone rate and a control zone rate are determined from the first and sequence of characterizing values, respectively. An error value is determined by comparing characterizing values for the reference zone and control zone. An output parameter value for the control zone us generated based on at least the error value and a dynamic nominal control zone value using a proportional-integral-derivative control algorithm, and the dynamic nominal control zone value is generated in a second control loop based on at least the reference zone rate and the control zone rate. The control zone of the substrate is processed according to the output parameter value.