Abstract:
Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a method may comprise: forming a first III-nitride layer with a first low bandgap energy on a first surface of a substrate; forming a second III-nitride layer with a first high bandgap energy on the first III-nitride layer; transforming portions of the first III-nitride layer into a plurality of III-oxide stripes by photo-enhanced wet oxidation; forming a plurality of III-nitride nanowires with a second low bandgap energy on the second III-nitride layer between the III-oxide stripes; and selectively transforming at least some of the III-nitride nanowires into III-oxide nanowires by selective photo-enhanced oxidation.
Abstract:
A thin film transistor includes a channel layer. The channel layer has a plurality of stacked oxide layers. The oxide layers are made of at least two different oxide materials. The channel layer modulates a threshold voltage of the thin film transistor. An insulating interface layer is formed between the channel layer and an insulating dielectric layer, thereby transforming the thin film transistor from a depletion type transistor to an enhanced type transistor.
Abstract:
A phase-change material and a memory unit using the phase-change material are provided. The phase-change material is in a single crystalline state and includes a compound of a metal oxide or nitroxide, wherein the metal is at least one selected from a group consisting of indium, gallium and germanium. The memory unit includes a substrate; at least a first contact electrode formed on the substrate; a dielectric layer disposed on the substrate and formed with an opening for a layer of the phase-change material to be formed therein; and at least a second contact electrode disposed on the dielectric layer. As the phase-change material is in a single crystalline state and of a great discrepancy between high and low resistance states, the memory unit using the phase-changed material can achieve a phase-change characteristic rapidly by pulse voltage and avert any incomplete reset while with a low critical power.
Abstract:
A light-scattering structure with micron-scale or submicron-scale protruding portions is provided to improve the light extraction efficiency of light emitting devices. The protruding portions function as scattering sites and can be assembled closely. A method of forming a light-scattering structure is also provided, wherein all the conventional substrate materials can be used for the substrate of the light-scattering structure, and scattering sites of submicron-scale, micron-scale or larger size can be fabricated.
Abstract:
A method for etching nitride is provided, by which the etching rate and the roughness of the etching surface can be powerfully controlled, and by which the etching depth can be in-situ monitored. The etching method comprises the steps of: (i) coating a first electrode on a nitride chip; (ii) mounting the nitride chip on a holding device; (iii)dipping the holding device, the nitride chip and the first electrode in electrolysis liquid; (iv) irradiating the nitride chip with a UV light having a wavelength shorter than 254 nm; and (v) connecting the first electrode to a second electrode dipped in the electrolysis liquid by a galvanometer to in-situ monitor the etching current, so as to in-situ control the etching depth.