Abstract:
A gain-clamped semiconductor optical amplifier comprises: at least one first surface; at least one second surface, each second surface facing and electrically isolated from a respective first surface; a plurality of nanowires connecting each opposing pair of the first and second surfaces in a bridging configuration; and a signal waveguide overlapping the nanowires such that an optical signal traveling along the signal waveguide is amplified by energy provided by electrical excitation of the nanowires.
Abstract:
A nano-scale device and method of fabrication provide a nanowire having (111) vertical sidewalls. The nano-scale device includes a semiconductor-on-insulator substrate polished in a [110] direction, the nanowire, and an electrical contact at opposite ends of the nanowire. The method includes wet etching a semiconductor layer of the semiconductor-on-insulator substrate to form the nanowire extending between a pair of islands in the semiconductor layer. The method further includes depositing an electrically conductive material on the pair of islands to form the electrical contacts. A nano-pn diode includes the nanowire as a first nano-electrode, a pn-junction vertically stacked on the nanowire, and a second nano-electrode on a (110) horizontal planar end of the pn-junction. The nano-pn diode may be fabricated in an array of the diodes on the semiconductor-on-insulator substrate.
Abstract:
A patterned array of metallic nanostructures and fabrication thereof is described. A device comprises a patterned array of metallic columns vertically extending from a substrate. Each metallic column is formed by metallically coating one of an array of non-metallic nanowires catalytically grown from the substrate upon a predetermined lateral pattern of seed points placed thereon according to a nanoimprinting process. An apparatus for fabricating a patterned array of metallic nanostructures is also described.
Abstract:
A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte. A method for performing NERS includes providing such a NERS-active structure, providing an analyte at a location proximate the NERS-active structure, irradiating the NERS-active structure and the analyte with radiation, varying the distance between the nanoparticles, and detecting Raman scattered radiation scattered by the analyte.
Abstract:
Structures for amplifying light include a resonant cavity in which an analyte may be positioned. The structures for amplifying light may be used to amplify the incident light employed in surface enhanced Raman spectroscopy (SERS). SERS systems employing the structures for amplifying light of the present invention and methods of performing SERS are also disclosed.
Abstract:
A method for forming quantum dots includes forming a superlattice structure that includes at least one nanostrip protruding from the superlattice structure, providing a quantum dot substrate, transferring the at least one nanostrip to the quantum dot substrate, and removing at least a portion of the at least one nanostrip from the substrate. The superlattice structure is formed by providing a superlattice substrate, forming alternating layers of first and second materials on the substrate to form a stack, cleaving the stack to expose the alternating layers, and etching the exposed alternating layers with an etchant that etches the second material at a greater rate than the first to form the at least one nanostrip.
Abstract:
A nano-colonnade structure-and methods of fabrication and interconnection thereof utilize a nanowire column grown nearly vertically from a (111) horizontal surface of a semiconductor layer to another horizontal surface of another layer to connect the layers. The nano-colonnade structure includes a first layer having the (111) horizontal surface; a second layer having the other horizontal surface; an insulator support between the first layer and the second layer that separates the first layer from the second layer. A portion of the second layer overhangs the insulator support, such that the horizontal surface of the overhanging portion is spaced from and faces the (111) horizontal surface of the first layer. The structure further includes a nanowire column extending nearly vertically from the (111) horizontal surface to the facing horizontal surface, such that the nanowire column connects the first layer to the second layer.
Abstract:
Devices, systems, and methods using Surface Enhanced Raman Spectroscopy (SERS) are disclosed. A device for generating Raman scattered radiation comprises a laser source and a SERS-active structure. The laser source may be configured for emanating radiation from an emanating surface or by forming a depression in the laser source, which creates a region of increased evanescent field from the laser source. SERS systems and methods include a device for generating Raman scattered radiation with a detector configured to receive the Raman scattered radiation.
Abstract:
A device for manipulating colloidal particles in a bistable medium, the device includes a microcontroller, which stores a color and/or design scheme for a bistable medium, and a mechanism for changing the bistable medium from a first state to a second state.
Abstract:
A device for manipulating colloidal particles in a bistable medium, the device includes a microcontroller, which stores a color and/or design scheme for a bistable medium, and a mechanism for changing the bistable medium from a first state to a second state.