Abstract:
A sensor senses a characteristic of an environment, e.g., humidity. The sensor has a substrate with strips of material that is sensitive to corrosion as a result of the characteristic. The strips are configured to respond differently to the characteristic. By means of repeatedly measuring the resistances of the strips, the environment can be monitored in terms of accumulated exposure to the characteristic. The strips are manufactured in a semiconductor technology so as to generate accurate sensors that behave predictably.
Abstract:
An apparatus and method for improving electrical contact between an implanted device (10) for recording or stimulating neuronal activity and surrounding tissue (12) (e.g., brain tissue, nerve fibers, etc.). In an exemplary embodiment, a nanometer sized topographic structure (36, 136) (e.g., a nanometer scale pillar) is processed for electrical connection with a corresponding electrode (30, 32) of the implanted device (10). The nanometer scale topographic structure (36, 136) bridges a gap (26) between the implanted device (10) and surrounding tissue (12), thus improving neuron-electrode coupling therebetween. The present disclosure can also be extended to any application where capacitive coupling to single or multiple cells (20) can be used for sensing and/or stimulation thereof.
Abstract:
An apparatus and method for electrostimulation treatment of neurological diseases is disclosed herein. The apparatus and method include an array (22) of sub-micron (and sub-cell size) FET electrodes (24) that are capacitively coupled to nervous system elements (both neurons (50) and axons (66)) as a replacement for traditional metal shanks in both single- and multi-electrode(s) electrostimulation implantable devices. By using such an approach, significant improvements in selectivity, power consumption and biocompatibility can be achieved, as well as relying on mainstream IC manufacture techniques for the manufacture thereof, making it cost-effective. The present disclosure can also be extended to any application where capacitive coupling to single or multiple cells can be used for sensing and/or stimulation thereof.
Abstract:
A sensor comprising a silicon substrate having a first and a second surface, integrated circuitry provided on the first surface of the silicon substrate, and a sensor structure provided on the second surface of the silicon substrate. The sensor structure and the integrated circuitry are electrically coupled to each other.
Abstract:
Disclosed is a liquid immersion sensor comprising a substrate (10) carrying a conductive sensing element (20) and a corrosive agent (30) for corroding the conductive sensing element, said corrosive agent being immobilized in the vicinity of the conductive sensing element and being soluble in said liquid.
Abstract:
The invention relates to a method of determining a charged particle concentration in an analyte (100), the method comprising steps of: i) determining at least two measurement points of a surface-potential versus interface-temperature curve (c1, c2, c3, c4), wherein the interface temperature is obtained from a temperature difference between a first interface between a first ion-sensitive dielectric (Fsd) and the analyte (100) and a second interface between a second ion-sensitive dielectric (Ssd) and the analyte (100), and wherein the surface-potential is obtained from a potential difference between a first electrode (Fe) and a second electrode (Se) onto which said first ion-sensitive dielectric (Fsd) and said second ion-sensitive dielectric (Ssd) are respectively provided, And ii) calculating the charged particle concentration from locations of the at least two measurement points of said curve (c1, c2, c3, c4). This method, which still is a potentiometric electrochemical measurement, exploits the temperature dependency of a surface-potential of an ion-sensitive dielectric in an analyte. The invention further provides an electrochemical sensor for determining a charged particle concentration in an analyte. The invention also provides various sensors which can be used to determine the charged particle concentration, i.e. EGFET's and EIS capacitors.
Abstract:
A detector device and method of its fabrication are disclosed. Illustratively, an additional via is present through an insulator layer over a gate channel region which is on top of the channel region. The additional via is filled with conductor material. The conductor material is removed to form a chamber leading to one side of the gate channel region. Furthermore, a nanopore is etched from the chamber through the channel region.
Abstract:
Disclosed is an integrated circuit comprising a substrate (10) carrying a plurality of circuit elements; a metallization stack (12, 14, 16) interconnecting said circuit elements, said metallization stack comprising a patterned upper metallization layer comprising a first metal portion (20) and a second metal portion (21); a passivation stack (24, 26, 28) covering the metallization stack; a gas sensor including a sensing material portion (32, 74) on the passivation stack; a first conductive portion (38) extending through the passivation stack connecting a first region of the sensing material portion to the first metal portion; and a second conductive portion (40) extending through the passivation stack connecting a second region of the sensing material portion to the second metal portion. A method of manufacturing such an IC is also disclosed.
Abstract:
The present invention relates to a sensor comprising a substrate (10) carrying a field effect transistor (30) having a gate electrode (32), the sensor further comprising a measurement electrode (36) spatially separated from the gate electrode; and a reference electrode (40), said measurement electrode being in configurable conductive contact with said gate electrode, the sensor further comprising a charge storage element (60) comprising a first electrode connected to a node (38) between the measurement electrode and the gate electrode; and a second electrode configurably connected to a known potential source (80). The present invention further relates to a method of performing a measurement with such a sensor.
Abstract:
A detector device: a source region (S), a drain region (D) and a gate contact (100) on a substrate (104), with a channel region between the source and drain regions (S, D), an insulator layer over the substrate, comprising vias (140, 142, 144) filled with conductor material, wherein the vias (140, 142, 144) are provided over the source, drain regions and a gate contact, an additional via (152) through the insulator layer, defining a first chamber leading to a first side of the channel region, a nanopore etched from this first chamber through the channel region, and connecting the first chamber to a second chamber, a drive means (60) for providing a voltage bias between the two chambers, a drive means for providing a voltage between the source and drain regions and gate, a current sensor (64) for sensing a charge flow between the source and the drain regions.