Abstract:
The invention is directed to a process to prepare a hydrogen rich gas mixture from a solid sulphur- and halogen-containing carbonaceous feedstock. The process involves the following steps. Step (a): gasification of the solid carbonaceous feedstock with an oxygen-containing gas to obtain a gas mixture comprising halogen compounds, sulphur compounds, hydrogen and at least 50 vol. % carbon monoxide, on a dry basis. Step (b): contacting the gas mixture with a quench gas or quench liquid to reduce the temperature of the gas mixture to below 900° C. Step (c) contacting the gas mixture with water having a temperature of between 150 and 250° C. to obtain a gas mixture comprising between 50 and 1000 ppm halogen and having a steam to carbon monoxide molar ratio of between 0.2:1 and 0.9:1. Step (d): subjecting the gas mixture obtained in step (c) to a water gas shift reaction wherein part or all of the carbon monoxide is converted with the steam to hydrogen and carbon dioxide in the presence of a catalyst as present in one fixed bed reactor or in a series of more than one fixed bed reactors and wherein the temperature of the gas mixture as it enters the reactor or reactors is between 190 and 230° C. Step (e): carbon dioxide and sulphur compounds are separated from the shifted gas mixture obtained in step (d) by contacting the shifted gas mixture with a solvent comprising dialkyl ethers of polyethylene glycol.
Abstract:
An apparatus for determining a property of a downhole formation, the apparatus comprising: an array having a plurality of transmitters and receivers capable of propagating electromagnetic waves through the formation; measuring circuitry for measuring an effect of the formation on the propagating waves; control circuitry arranged to vary the propagating waves as a function of at least one of frequency, spacing and polarization; and processing circuitry arranged to combine the effects of the propagating waves that are varied according to frequency, spacing and polarization for determining the property of the downhole formation.
Abstract:
Systems and methods for stabilizing the gain of a gamma-ray spectroscopy system are provided. In accordance with one embodiment, a method of stabilizing the gain of a gamma-ray spectroscopy system may include generating light corresponding to gamma-rays detected from a geological formation using a scintillator having a natural radioactivity, generating an electrical signal corresponding to the light, and stabilizing the gain of the electrical signal based on the natural radioactivity of the scintillator. The scintillator may contain, for example, naturally radioactive elements such as Lutetium or Lanthanum.
Abstract:
A probe 1 for measuring the electromagnetic properties of a down-hole material MC, GF, DM of a well-bore WB comprises a metallic pad 2 in contact with the down-hole material. The pad 2 further comprises an open-ended coaxial wire 4 coupled to an electronic circuit 3. The open-ended coaxial wire 4 comprises an inner conductor 4A sunk in an insulator 4B and is positioned sensibly perpendicularly to the well-bore wall. The electronic circuit 3 is able to send a high-frequency input signal into the open-ended coaxial wire 4 and to determine a reflection coefficient based on a high-frequency output signal reflected by the open-ended coaxial wire 4.
Abstract:
A well-logging tool may include a sonde housing and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a uni-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
A well-logging tool may include a sonde housing, and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a bi-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
Process to prepare a hydrogen rich gas mixture from a halogen containing gas mixture comprising hydrogen and at least 50 vol. % carbon monoxide, on a dry basis, by contacting the halogen containing gas mixture with water having a temperature of between 150 and 250° C. to obtain a gas mixture poor in halogen and having a steam to carbon monoxide molar ratio of between 0.2:1 and 0.9:1 and subjecting said gas mixture poor in halogen to a water gas shift reaction wherein part or all of the carbon monoxide is converted with the steam to hydrogen and carbon dioxide in the presence of a catalyst as present in one fixed bed reactor or in a series of more than one fixed bed reactors and wherein the temperature of the gas mixture as it enters the reactor or reactors is between 190 and 230° C.
Abstract:
An antenna (3) of an electromagnetic probe used in investigation of geological formations GF surrounding a borehole WBH comprises a conductive base (31) and an antenna element (32). The conductive base (31) comprises an opened non-resonant cavity (33). The antenna element (32) is embedded in the cavity (33) and goes right through the cavity. The antenna element (32) is isolated from the conductive base (31). The antenna element (32) is coupled to at least one electronic module via a first 34A and a second 34B port, respectively. The electronic module operates the antenna so as to define a simultaneously superposed pure magnetic dipole and pure electric dipole.
Abstract:
Systems and methods for stabilizing the gain of a gamma-ray spectroscopy system are provided. In accordance with one embodiment, a method of stabilizing the gain of a gamma-ray spectroscopy system may include generating light corresponding to gamma-rays detected from a geological formation using a scintillator having a natural radioactivity, generating an electrical signal corresponding to the light, and stabilizing the gain of the electrical signal based on the natural radioactivity of the scintillator. The scintillator may contain, for example, naturally radioactive elements such as Lutetium or Lanthanum.
Abstract:
Process to prepare a hydrogen rich gas mixture from a halogen containing gas mixture comprising hydrogen and at least 50 vol. % carbon monoxide, on a dry basis, by contacting the halogen containing gas mixture with water having a temperature of between 150 and 250° C. to obtain a gas mixture poor in halogen and having a steam to carbon monoxide molar ratio of between 0.2:1 and 0.9:1 and subjecting said gas mixture poor in halogen to a water gas shift reaction wherein part or all of the carbon monoxide is converted with the steam to hydrogen and carbon dioxide in the presence of a catalyst as present in one fixed bed reactor or in a series of more than one fixed bed reactors and wherein the temperature of the gas mixture as it enters the reactor or reactors is between 190 and 230° C.