摘要:
The invention relates to novel nucleic acid molecules, to the use thereof for constructing genetically improved microorganisms and to methods for preparing fine chemicals, in particular amino acids, with the aid of said genetically improved microorganisms.
摘要:
The invention relates to methods for the fermentative production of sulfur-containing fine chemicals, in particular L-methionine, by using bacteria which express a nucleotide sequence coding for a methionine synthase (metA) gene.
摘要:
The invention relates to methods for the fermentative production of sulfur-containing fine chemicals, in particular L-methionine, by using bacteria which express a nucleotide sequence coding for a methionine synthase (metH) gene.
摘要:
The invention relates to novel nucleic acid molecules, to the use thereof for constructing genetically improved microorganisms and to methods for preparing fine chemicals, in particular amino acids, with the aid of said genetically improved microorganisms.
摘要:
The invention relates to a novel nucleic acid molecule, to the use thereof for constructing genetically improved microorganisms and to methods for preparing fine chemicals, in particular amino acids, with the aid of said genetically improved microorganisms.
摘要:
Isolated nucleic acid molecules, designated HA nucleic acid molecules, which encode novel HA proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing HA nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated HA proteins, mutated HA proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of HA genes in this organism.
摘要:
Isolated nucleic acid molecules, designated SRT nucleic acid molecules, which encode novel SRT proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing SRT nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated SRT proteins, mutated SRT proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of SRT genes in this organism.
摘要:
The invention relates to a method for isolating 1,5-diaminopentane (DAP) from DAP-containing fermentation broths, to a method for the fermentative production of DAP using said isolating method and to a method for producing DAP-comprising polymers by using the DAP isolated or fermatively produced DAPs according to said methods.
摘要:
The present invention relates to a novel method for the biocatalytic production of unsaturated dicarboxylic acids by cultivating a recombinant microorganism co-expressing a glutaconate CoA-transferase and a 2-hydroxyglutaryl-CoA dehydratase system. The present invention also relates to corresponding recombinant hosts, recombinant vectors, expression cassettes and nucleic acids suitable for preparing such hosts as well as a method of preparing polyamide or polyester copolymers making use of said dicarboxylic acids as obtained by said biocatalytic production method.
摘要:
Isolated nucleic acid molecules, designated MR nucleic acid molecules, which encode novel MR proteins from Corynebacterium glutamicum are described which are involved in biosynthesis of a fine chemical, e.g., methionine biosynthesis. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing MR nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides methods of producing methionine from microorganisms, e.g., C. glutamicum, which involve culturing recombinant microorganisms which overexpress or underexpress at least one MR molecule of the invention under conditions such that methionine is produced. Also featured are methods of producing a fine chemical, e.g., methionine, which involve culturing recombinant microorganisms having selected MR genes deleted or mutated under conditions such that the fine chemical, e.g., methionine, is produced.