Abstract:
Embodiments of the inventive concept provide a substrate processing apparatus. The substrate treating apparatus comprises a process treating unit providing a treating space performed treating the substrate; a plasma generating unit generating the plasma discharging a process gas, and supplying the plasma to the treating space. The plasma generating unit provides a plasma chamber having a generating space of the plasma; an antenna wound to surround the plasma chamber outside the plasma chamber; a first coating film covering inside walls of the plasma chamber and comprising yttrium fluoride (YF3).
Abstract:
The inventive concept relates to an apparatus for processing a substrate. The apparatus for processing the substrate includes a housing having a process space, a support unit that supports the substrate in the process space, a plasma source that generates plasma from a process gas, and a baffle unit disposed over the support unit. The baffle unit includes a baffle having first holes formed therein through which the process gas and/or the plasma flows, and the baffle has second holes formed in an edge region thereof, each of which has a lengthwise direction inclined with respect to a radial direction of the baffle when viewed from above.
Abstract:
Disclosed is a substrate processing apparatus that includes an interference member for minimizing a collision between a descending flow of gas supplied by a fan unit and a gas flow directed toward a transfer space from the inside of a container.
Abstract:
Provided is a plasma generating apparatus using a dual plasma source and a substrate treating apparatus including the same. A plasma generating apparatus may include: an RF power source supplying an RF signal; a plasma chamber providing a space for generating plasma; a first plasma source disposed on a portion of the plasma chamber to generate plasma; and a second plasma source disposed on another portion of the plasma chamber to generate plasma wherein the second source comprises a plurality of gas supply loops disposed along a circumference of the plasma chamber and supplied with a process gas therein to supply the process gas to the plasma chamber; and a plurality of electromagnetic field applicators coupled to the gas supply loop and receiving the RF signal to generate plasma from the process gas.
Abstract:
The present invention disclosed herein relates to a substrate treating apparatus and method. The substrate treating method includes: providing a substrate on which an oxide layer is formed; treating the oxide layer with a first process gas in a plasma state to substitute the treated oxide layer with a by-product layer; and heating the substrate to remove the by-product layer at a temperature which is above a first heating temperature at which the by-product layer is decomposed and is above a second heating temperature that is a boiling point of an additive by-product generated while the by-product layer is decomposed.
Abstract:
Provided are a substrate transfer apparatus and method and a substrate processing apparatus. The substrate transfer apparatus includes: a body portion; an arm part coupled to the body portion, the arm part moving to allow the substrate to be transferred; a suction part provided with the arm portion, the suction part suctioning and fixing the substrate; and a control part controlling an operation of the substrate transfer apparatus, wherein the control part changes a suction point on the substrate to re-attempt suction when suction of the substrate by the suction part is unsuccessful.
Abstract:
Provided is a substrate processing apparatus. The substrate treating apparatus includes a processing chamber, a substrate supporting unit, a plasma generation unit, a gas supplying unit, an exhaust adjusting unit, or the like. Residual gas and reaction by-products are generated in a chamber after a substrate is treated by using a gas supplied from the gas supplying unit or plasma excited by the plasma generation unit. The gas exhaust adjusting unit adjusts discharge amounts of residual gas and reaction by-products to adjust residence time or pressure of gas, plasma, or the like in the apparatus, thereby controlling a uniformity of the substrate treating process.
Abstract:
Provided is a substrate treating apparatus including a first supplying unit, a second supplying unit, a first source, a second source, a gas separation member or the like. Plasma generated from a first gas supplied from a first supplying unit by the first source is used for treating a central area of a substrate. Plasma generated from a second gas supplied from a second supplying unit by the second source is used for treating an edge area of the substrate. A gas separation member prevents plasmas generated respectively from first and second gases from being mixed up.
Abstract:
Provided is a substrate treatment apparatus. The substrate treatment apparatus includes a load port on which a carrier accommodating a plurality of substrates to which a back-ground wafer is attached to a mounting tape fixed to a frame ring is placed, a plasma treatment unit supplying plasma to treat a top surface of the wafer, and a substrate transfer unit transferring the substrate between the carrier and the plasma treatment unit.
Abstract:
Provided is an apparatus for manufacturing a light guiding plate. The apparatus for manufacturing a light guiding plate includes an unwinding unit unwinding a film formed of a flexible material and wound in a roll shape, a winding unit winding the film provided from the unwinding unit in a roll shape, a surface treatment unit disposed between the unwinding unit and the winding unit to treat a surface of the film transferred into the winding part into a hydrophobic surface, a pattern formation unit disposed between the surface treatment unit and the winding unit to form a micro lens pattern on the surface of the film of which the surface is treated, and a pattern curing unit disposed between the pattern formation unit and the winding unit to cure the pattern.