Abstract:
A method for making a resilient ion exchange membrane comprising polymerizing a composition containing at least an ionic surfactant monomer having an ethylenic group and a long hydrophobic alkyl group filling the pores of and covering the surfaces of a porous substrate. The hydrophobic long alkyl group in the ionic surfactant monomer provides ion exchange membranes with improved mechanical properties, and good chemical stability.
Abstract:
A method and system for treating and purifying saltwater contaminated by volatile compounds. The saltwater is evaporated resulting in a gas composed of water vapor and gaseous volatile compounds. The gas is condensed into a condensate containing the contaminated volatile compounds which is biologically treated to remove the volatile compounds thereby producing purified water. The latent heat released by condensing is used to evaporate the purified water into the atmosphere in an energy efficient manner.
Abstract:
Methods, systems, and techniques for desalinating a saltwater using a humidifier unit. The humidifier unit has a housing, which has a carrier gas inlet and a saltwater inlet. The humidifier unit also includes a packing, within the housing, having a surface with a critical surface tension of less than 25 mN/m according to the Zisman method. The packing is arranged to facilitate a saltwater that enters the housing through the saltwater inlet and a carrier gas that enters the housing through the carrier gas inlet to contact each other. The contact facilitates evaporation of the saltwater, which produces salt solids on at least a surface of the packing, a humidified gas and a concentrated brine.
Abstract:
Methods, systems, and techniques for removing ammonium from ammonia-containing water involve using a stack that has alternating product chambers and concentrate chambers for receiving ammonia-containing water and an acidic solution, respectively, with the chambers being bounded by alternating cation exchange membranes and proton permselective cation exchange membranes. Ammonium moves from the product chambers to the concentrate chambers across the CEMs and protons move from the concentrate chambers to the product chambers across the pCEMs when the stack is in use. An electrolyzer may also be used to convert the ammonium in the concentrate chambers into nitrogen.
Abstract:
A resilient anion exchange membrane including a homogeneous cross-linked ion-transferring polymer substantially filling pores and substantially covering surfaces of a porous substrate, wherein the resilient anion exchange membrane is prepared by polymerizing a composition including a quaternary ammonium cationic surfactant monomer, a crosslinking monomer including two or more ethylenic groups, a free radical initiator, and a solvent.
Abstract:
A process for preparing an acrylamide-based crosslinking monomer comprising reacting in the presence of a catalyst an isocyanate compound containing at least two isocyanate groups with one of acrylic acid or methacrylic acid. These acrylamide-based crosslinking monomers are used in the preparation of coating compositions, adhesive compositions curable by applying thermal or radiation energy, and in the preparation of cation or anion exchange membranes.
Abstract:
The present disclosure describes a modular humidification-dehumidification (HDH) apparatus and system for concentrating a solution including a plurality of internal modules coupled to each other. The plurality of internal modules includes a humidification module and a dehumidification module in gas flow communication with the humidification module. The humidification module includes humidification media facilitating evaporation of liquid from the solution to gas as the solution passes through the humidification media thereby producing a concentrated solution and a humidified gas. The dehumidification module includes a condensing heat exchanger for condensing vapour from the humidified gas.
Abstract:
A system, apparatus and method for concentrating a solution. The system includes a humidification device and a solution flow path for flow of a solution to be concentrated to the humidification device. The humidification device includes humidification media to facilitate evaporation of liquid from the solution to be concentrated to gas as the solution to be concentrated passes through the humidification media thereby concentrating the solution. The method includes flowing a solution to be concentrated along a flow path to a humidification device including humidification media, flowing a gas through the humidification media, and flowing the solution to be concentrated through the humidification media. There is evaporation of liquid from the solution to the gas as the solution passes through the humidification media thereby concentrating the solution and producing a humidified gas. The solution to be concentrated may be salt water and the gas may be air.
Abstract:
An apparatus, method and plant for desalinating saltwater and contaminated saltwater. The apparatus includes a stack and a manifolding assembly. The stack includes a product chamber, a first and second concentrate chamber, an anion exchange membrane forming a boundary between the first concentrate chamber and the product chamber and a cation exchange membrane forming a boundary between the second concentrate chamber and the product chamber. The manifolding assembly includes product and concentrate manifolding fluidly coupled to the product and concentrate chambers respectively, to convey a saltwater being desalinated to and away from the product chamber, and a concentrate to and away from the concentrate chambers. The stack may include a diluent chamber and adjacent anion or cation exchange membranes between the product chamber, diluent chamber and concentrate chamber to respectively convey anions or cations across multiple chambers.
Abstract:
The present disclosure is directed at a compression device for compressing a stack to prevent leaks and at an apparatus including the stack and the compression device. The stack includes a pair of rigid end plates located at opposing ends of the stack, a plurality of membrane bounded compartments layered between one of the rigid end plates and the other of the rigid end plates and fluid manifolds extending through the membrane bound compartments. The compression device is fixedly coupled to opposing ends of the pair of rigid end plates and includes compression members movable to compress one of the rigid end plates towards the other of the rigid end plates. The compression members are positioned to apply force to the stack in the vicinity of the fluid manifolds.