Abstract:
Processes, systems, and techniques for multivalent ion desalination of a feed water use an apparatus that has a cathode, an anode, and an electrodialysis cell located between the cathode and anode. The cell has a product chamber through which the feed water flows, a multivalent cation concentrating chamber on a cathodic side of the product chamber through which the concentrated multivalent cation solution flows, and a multivalent anion concentrating chamber on an anodic side of the product chamber through which the concentrated multivalent anion solution flows. The product chamber and the multivalent cation concentrating chamber are each bounded by and share a cation exchange membrane, and the product chamber and the multivalent anion concentrating chamber are each bounded by and share an anion exchange membrane. A monovalent ion species is added to at least one of the concentrated multivalent cation solution and the concentrated multivalent anion solution.
Abstract:
A process for preparing an acrylamide-based crosslinking monomer including reacting in the presence of a catalyst an isocyanate compound containing at least two isocyanate groups with one of acrylic acid and methacrylic acid.
Abstract:
A method for making a resilient ion exchange membrane comprising polymerizing a composition containing at least an ionic surfactant monomer having an ethylenic group and a long hydrophobic alkyl group filling the pores of and covering the surfaces of a porous substrate. The hydrophobic long alkyl group in the ionic surfactant monomer provides ion exchange membranes with improved mechanical properties, and good chemical stability.
Abstract:
A resilient anion exchange membrane including a porous matrix impregnated with a cross-linked homogenous ion-transferring polymer that fills the pores and substantially covers the surfaces of the porous matrix. The cross-linked homogenous ion-transferring polymer formed by polymerizing a homogeneous solution including (i) a hydrophilic ionic monomer selected from a group consisting of 3-methacryloylaminopropyl trimethylammonium chloride, vinylbenzyl trimethylammonium chloride, 3-acrylamidopropyl trimethylammonium chloride, 2-acryloyloxyethyl trimethylammonium chloride, and mixtures thereof, with (ii) a hydrophobic cross-linking oligomer selected from a group consisting of polyurethane oligomer diacrylate, polyester oligomer diacrylate, epoxy oligomer diacrylate, polybutadiene oligomer diacrylate, silicone diacrylate, dimethacrylate counterparts thereof, polyurethane oligomers having three or more vinyl groups, polyester oligomers having three or more vinyl groups, and mixtures thereof.
Abstract:
A system, apparatus and method for concentrating a solution. The system includes a humidification device and a solution flow path for flow of a solution to be concentrated to the humidification device. The humidification device includes humidification media to facilitate evaporation of liquid from the solution to be concentrated to gas as the solution to be concentrated passes through the humidification media thereby concentrating the solution. The method includes flowing a solution to be concentrated along a flow path to a humidification device including humidification media, flowing a gas through the humidification media, and flowing the solution to be concentrated through the humidification media. There is evaporation of liquid from the solution to the gas as the solution passes through the humidification media thereby concentrating the solution and producing a humidified gas. The solution to be concentrated may be salt water and the gas may be air.
Abstract:
A reverse osmosis-based method and system for concentrating a saltwater. The system includes at least first and second reverse osmosis units fluidly connected in series. The membrane of the first reverse osmosis unit has at least a 95% rejection rate for sodium chloride, and the membrane of the second reverse osmosis unit has a 30% to 75% rejection rate for sodium chloride. Permeate from the second reverse osmosis unit is recycled to the first reverse osmosis unit for increased water recovery. Temperatures for the saltwater and/or the recycled permeate are controlled using heat exchangers to help ensure the reverse osmosis units' nominal performance.
Abstract:
Zero liquid discharge systems, processes, and techniques for treating a saltwater without evaporative crystallization. The saltwater is treated by a fluidic circuit comprising a high-pressure reverse osmosis (“HPRO”) unit configured to operate at a hydraulic pressure of at least 1,500 psi, a cooling crystallizer, and a solids-liquid separator. The saltwater is first concentrated by the HPRO unit to produce an HPRO brine, which is subsequently cooled to a designated crystallization temperature by the cooling crystallizer. The cooling crystallizer crystallizes salt crystals from the cooled HPRO brine and produces a salt-diminished brine. The solids-liquid separator separates the salt-diminished brine from the salt crystals. The salt-diminished brine from the solids-liquid separator is returned to the HPRO unit for further treatment, which allows additional salts to be crystallized from the returned salt-diminished brine.
Abstract:
Processes, systems, and techniques for treating produced water drawn from a subterranean formation. The produced water is provided and contains dissolved solids and magnesium, calcium, and sodium ions. The produced water is desalinated using an electrically-driven membrane separation apparatus that includes alternating anion exchange membranes and cation exchange membranes defining opposing sides of alternating product and concentrate chambers. The desalinating involves flowing the produced water through the product chamber, flowing a second water through the concentrate chamber, and applying an electric potential across the cation and anion exchange membranes as the produced and second waters flow through the product and concentrate chambers, respectively. The product water is consequently produced and has a total dissolved solids content of between 300 mg/L and 8,000 mg/L, a total concentration of calcium ions and magnesium ions less than 100 mg/L, and a sodium adsorption ratio of 20 to 90.
Abstract:
A modular humidification-dehumidification (HDH) apparatus and system for concentrating a solution including a plurality of internal modules coupled to each other. The plurality of internal modules includes a humidification module and a dehumidification module in gas flow communication with the humidification module. The humidification module includes humidification media facilitating evaporation of liquid from the solution to gas as the solution passes through the humidification media thereby producing a concentrated solution and a humidified gas. The dehumidification module includes a condensing heat exchanger for condensing vapor from the humidified gas.
Abstract:
A multistage thermal desalination system, together with its associated method of use, allows de-scaling of subsystems exposed to saturated saltwater by alternating the saturation stage of the process between two neighboring physical desalination stages. The desalination system is provided with at least one transfer conduit, at least one pump, and valving to permit saltwaters being desalinated by higher and lower stage desalination subsystems to be swapped. By replacing the saturated saltwater in a higher salt concentration desalination subsystem with lower salt concentration saltwater, the scaling in higher salt concentration desalination subsystem is reduced while the saturation load is placed on another of the desalination subsystems.