Abstract:
An integrated circuit card includes a substrate and an integrated circuit carried by the substrate. A first sector is delimited by a first weakening line on the substrate, with the first sector being able to be separated from the substrate. A second sector is delimited by a second weakening line inside the first sector, with the second sector being able to be separated from the substrate and having the integrated circuit thereon. A disposable frame-piece is defined between the first and second weakening lines of the first and second sectors, and has a ring form. A breakage lug is arranged with respect to the disposable frame-piece to break the disposable frame-piece so that it is no longer intact, during separation of the second sector from the substrate.
Abstract:
A microelectromechanical gyroscope that includes a first mass oscillatable according to a first axis; an inertial sensor, including a second mass, drawn along by the first mass and constrained so as to oscillate according to a second axis, in response to a rotation of the gyroscope; a driving device coupled to the first mass so as to form a feedback control loop and configured to maintain the first mass in oscillation at a resonance frequency; and an open-loop reading device coupled to the inertial sensor for detecting displacements of the second mass according to the second axis. The driving device includes a read signal generator for supplying to the inertial sensor at least one read signal having the form of a square-wave signal of amplitude that sinusoidally varies with the resonance frequency.
Abstract:
A converter includes an inductor configured to receive an input signal and output configured to supply an electrical load with an output signal. The converter operates to charge the inductor until a maximum pre-set current value is reached during a first operating condition in which the electrical load is not supplied. Next, the converter actively supplies the electrical load by partially discharging the inductor during a first time interval of a second operating condition. Then, the converter passively supplies the electrical load by the residual charge of the inductor during a second time interval, subsequent to the first time interval, of the second operating condition, by discharging the inductor completely.
Abstract:
An oscillator circuit selectively charges and discharges a capacitor with currents having variable magnitudes. A trimming circuit functions to measure a half period of the oscillator signal. The measured half period is compared to a reference period to generate an error signal. The variable magnitudes of one or the other or both of the current for sourcing or sinking at the capacitor are adjusted in response to the error signal.
Abstract:
In an embodiment, focusing an image-capture device such as, e.g., a camera including an optical system displaceable in opposite directions (A, B) via a focusing actuator, is controlled by evaluating a scale factor for the images acquired by the device. An accumulated value of the variations of the scale factor over a time interval (e.g., over a number of frames) is produced and the absolute value thereof is compared against a threshold. If the threshold is reached, which may be indicative of a zoom movement resulting in image de-focusing, a refocusing action is activated by displacing the optical system via the focusing actuator in the one or the other of the opposite focusing directions (A or B) as a function of whether the accumulated value exhibits an increase or a decrease (i.e., whether the accumulated value is positive or negative).
Abstract:
A MEMS device wherein a die of semiconductor material has a first face and a second face. A membrane is formed in or on the die and faces the first surface. A cap is fixed to the first face of the first die and is spaced apart from the membrane by a space. The die is fixed, on its second face, to an ASIC, which integrates a circuit for processing the signals generated by the die. The ASIC is in turn fixed on a support. A packaging region coats the die, the cap, and the ASIC and seals them from the outside environment. A fluidic path is formed through the support, the ASIC, and the first die, and connects the membrane and the first face of the die with the outside, without requiring holes in the cap.
Abstract:
A micromechanical structure for a MEMS capacitive acoustic transducer, has: a substrate made of semiconductor material, having a front surface lying in a horizontal plane; a membrane, coupled to the substrate and designed to undergo deformation in the presence of incident acoustic-pressure waves; a fixed electrode, which is rigid with respect to the acoustic-pressure waves and is coupled to the substrate by means of an anchorage structure, in a suspended position facing the membrane to form a detection capacitor. The anchorage structure has at least one pillar element, which is at least in part distinct from the fixed electrode and supports the fixed electrode in a position parallel to the horizontal plane.
Abstract:
Electronic device including a substrate provided with at least one passing opening, a MEMS device with a differential sensor provided with a first and a second surface having at least one portion sensitive to chemical and/or physical variations of fluids present in correspondence with a first and a second opposed active surface thereof. The first surface of the MEMS device leaves the first active surface exposed and the second surface being provided with a further opening which exposes said second opposed active surface, the electronic device being characterized in that the first surface of the MEMS device faces the substrate and is spaced therefrom by a predetermined distance, the sensitive portion being aligned to the passing opening of the substrate, and in that it also comprises a protective package, which incorporates at least partially the MEMS device and the substrate.
Abstract:
An electrical-optical modulator may function at high data rates and may be realized in comparably low cost silicon base technology, typically in BJT, BiCMOS or CMOS technologies. The output signal path may include a high transition frequency BJT and by using an active load constituted by a MOS driven by an inverted version of the modulating signal that drives the BJT, the falling edge of the output signal is sped up.
Abstract:
A device includes an epitaxial region extending into a front surface of a chip. A portion of the chip adjacent the epitaxial region defines a collector. A gate is provided in a trench extending into the epitaxial region from the front surface. An emitter includes a body extending into the epitaxial region at a first side of the trench and a source extending into the body region from the front surface at the trench. A dummy emitter extends into the epitaxial region from the front surface at a second side of the trench opposite said first side. The dummy emitter lacks the source. The gate extends along a first wall of the trench facing the emitter region. A dummy gate is formed in the trench in a manner electrically isolated from the gate and extending along a second wall of the trench opposite said first wall.