Abstract:
A method of forming a ferroelectric device includes forming a ferroelectric pattern on a substrate, the ferroelectric pattern including a ferroelectric material including titanium and oxygen, forming an insulating layer on the ferroelectric pattern, and planarizing the insulating layer using a slurry until the ferroelectric pattern is exposed, wherein the ferroelectric pattern serves as a polishing stop pattern and the slurry includes ceria.
Abstract:
In methods of manufacturing a variable resistance structure and a phase-change memory device, after forming a first insulation layer on a substrate having a contact region, a contact hole exposing the contact region is formed through the first insulation layer. After forming a first conductive layer on the first insulation layer to fill up the contact hole, a first protection layer pattern is formed on the first conductive layer. The first conductive layer is partially etched to form a contact and to form a pad on the contact. A second protection layer is formed on the first protection layer pattern, and then an opening exposing the pad is formed through the second protection layer and the first protection layer pattern. After formation of a first electrode, a phase-change material layer pattern and a second electrode are formed on the first electrode and the second protection layer.
Abstract:
Methods of forming ferroelectric layers include forming a ferroelectric layer on a substrate and chemically-mechanically polishing a surface of the ferroelectric layer by rotating a polishing pad on the surface at a rotation speed in a range from about 5 rpm to about 25 rpm. This polishing step includes pressing the polishing pad onto the surface of the ferroelectric layer at a pressure in a range from about 0.5 psi to about 3 psi. This polishing step may be followed by the step of exposing the polished surface to a rapid thermal anneal. This anneal can be performed in an inert atmosphere containing a gas selected from a group consisting of nitrogen, helium, argon and neon.
Abstract:
Disclosed is a metal-metal oxide resistive memory device including a lower conductive layer pattern disposed in a substrate. An insulation layer is formed over the substrate, including a contact hole to partially expose the upper surface of the lower conductive layer pattern. The contact hole is filled with a carbon nanotube grown from the lower conductive layer pattern. An upper electrode and a transition-metal oxide layer made of a 2-components material are formed over the carbon nanotube and the insulation layer. The metal-metal oxide resistive memory device is adaptable to high integration and operable with relatively small power consumption by increasing the resistance therein.
Abstract:
A protection layer is formed on a semiconductor substrate having a cell array region and an alignment key region. A plurality of data storage elements are formed on the protection layer in the cell array region. An insulating layer is formed on the data storage elements, a barrier layer is formed on the insulating layer, and a sacrificial layer is formed on the barrier layer. The sacrificial layer, the barrier layer and the insulating layer are patterned to form contact holes that expose the data storage elements, and conductive plugs are formed in the contact holes. The sacrificial layer is etched to leave portions of the conductive plugs protruding from the barrier layer. The protruding portions of the conductive plugs are removed by polishing.
Abstract:
A method of fabricating a semiconductor device, the method including providing a substrate; forming an underlying layer on the substrate; forming a sacrificial layer on the underlying layer; forming an opening in the sacrificial layer by patterning the sacrificial layer such that the opening exposes a predetermined region of the underlying layer; forming a mask layer in the opening; forming an oxide mask by partially or completely oxidizing the mask layer; removing the sacrificial layer; and etching the underlying layer using the oxide mask as an etch mask to form an underlying layer pattern.
Abstract:
Spaced apart bonding surfaces are formed on a first substrate. A second substrate is bonded to the bonding surfaces of the first substrate and cleaved to leave respective semiconductor regions from the second substrate on respective ones of the spaced apart bonding surfaces of the first substrate. The bonding surfaces may include surfaces of at least one insulating region on the first substrate, and at least one active device may be formed in and/or on at least one of the semiconductor regions. A device isolation region may be formed adjacent the at least one of the semiconductor regions.
Abstract:
A plug comprises a first insulating interlayer, a tungsten pattern and a tungsten oxide pattern. The first insulating interlayer has a contact hole formed therethrough on a substrate. The tungsten pattern is formed in the contact hole. The tungsten pattern has a top surface lower than an upper face of the first insulating interlayer. The tungsten oxide pattern is formed in the contact hole and on the tungsten pattern. The tungsten oxide pattern has a level face.
Abstract:
Spaced apart bonding surfaces are formed on a first substrate. A second substrate is bonded to the bonding surfaces of the first substrate and cleaved to leave respective semiconductor regions from the second substrate on respective ones of the spaced apart bonding surfaces of the first substrate. The bonding surfaces may include surfaces of at least one insulating region on the first substrate, and at least one active device may be formed in and/or on at least one of the semiconductor regions. A device isolation region may be formed adjacent the at least one of the semiconductor regions.
Abstract:
A method of forming a semiconductor device includes: forming a pattern having trenches on a semiconductor substrate; forming a semiconductor layer on the semiconductor device that fills the trenches; planarizing the semiconductor layer using a first planarization process without exposing the pattern; performing an epitaxy growth process on the first planarized semiconductor layer to form a crystalline semiconductor layer; and planarizing the crystalline semiconductor layer until the pattern is exposed to form a crystalline semiconductor pattern.