Abstract:
A microarray-based assay is provided, which is used for analyzing molecular interactions, including polynucleotides, polypeptides, antibodies, small molecule compounds, peptides and carbohydrates. Such method comprises labeling a target molecule with a luminophore, coupling the target molecule to a particle, and binding to a probe molecule on microarray. In particular, multiplexed genetic analysis of nucleic acid fragments can be implemented. Specific genes, single nucleotide polymorphisms or gene mutations, such as deletions, insertions, and indels, can be identified. This technology, with high sensitivity, enables the detection and interpretation of molecular interactions in an efficient way.
Abstract:
An automatic injection device comprises at least an injection unit (1). The said injection unit (1) is formed by sealing a cover plate layer (3) with hydrophilic surfaces and a microfluid layer (4). The said cover plate layer (3) is provided with at least two through holes (5). he said microfluid layer (4) is provided with a hollow-out hybridization chamber (7) and at least two hollow-out microfluid channels (6). One end of each channel (6) is connected with the hybridization chamber (7), and the other end is connected with a through hole (5) of the cover plate layer (3) respectively. Taking advantage of the hydrophilicity of the cover plate, the automatic injection device makes a solution automatically enter and fill the hybridization chamber (7) and the microfluid channels (6) by the driving force of liquid surface tension. The flow uniformity of sample solution in microarray chip is achieved by the structural design of the hybridization chamber (7) and the microfluid channels (6). The automatic injection device has advantages of simple manufacture, easy operation, high hybridization efficiency, low sample cost, and automatic quantificational injection.
Abstract:
Among others things, techniques, systems, and apparatus are disclosed for recording electrophysiological signals. In one aspect, a microelectrode sensing device includes a printed circuit board (PCB), a chip unit electrically connected to the PCB, and a cell culture chamber positioned over the chip unit and sealed to the PCB with the chip unit between the PCB and the cell culture chamber. The chip unit includes a substrate; a conductive layer positioned over the substrate that includes one or more recording electrodes; an insulation layer positioned over the conductive layer; another conductive layer positioned over the insulation layer that includes positioning electrodes; and another insulation layer positioned over the other conductive layer. The recording and positioning electrodes are electrically independent so as to independently receive a stimulus signal at each recording electrode and positioning electrode and independently detect a sensed signal at each recording electrode.
Abstract:
This invention relates generally to the field of microarray chips and uses thereof. In particular, the invention provides a microarray reaction device that can be used in assaying the interaction between various moieties, e.g., nucleic acids, immunoreactions involving proteins, interactions between a protein and a nucleic acid, a ligand-receptor interaction, and small molecule and protein or nucleic acid interactions, etc. Articles of manufacture and kits comprising the microarray reaction device and assaying methods using the microarray reaction device are also provided.
Abstract:
This invention relates generally to the field of microarray reaction devices and uses thereof. In particular, the invention a microarray reaction device wherein a plurality of reaction spaces are formed between a first and second plurality of projections, the heights of said plurality of reaction spaces being substantially identical and controllable by a supporting structure, and the relative positions between the first and second plurality of projections being controllable by a positioning structure. Articles of manufacture comprising the microarray reaction device and methods for assaying an analyte using the microarray reaction device are also provided.
Abstract:
A microarray-based assay is provided, which is used for analyzing molecular interactions, including polynucleotides, polypeptides, antibodies, small molecule compounds, peptides and carbohydrates. Such method comprises coupling a target molecule to a particle and then binding to a probe molecule on microarray. In particular, multiplexed genetic analysis of nucleic acid fragments can be implemented. Specific genes, single nucleotide polymorphisms or gene mutations, such as deletions, insertions, and indels, can be identified. Coupled with microarray, the particles, themselves or further modified, facilitate the detection of results with non-expensive devices or even naked eyes. This technology enables the detection and interpretation of molecular interactions in an efficient and cost effective way.
Abstract:
A microarray-based assay is provided, which is used for analyzing molecular interactions, including polynucleotides, polypeptides, antibodies, small molecule compounds, peptides and carbohydrates. Such method comprises coupling a target molecule to a particle and then binding to a probe molecule on microarray. In particular, multiplexed genetic analysis of nucleic acid fragments can be implemented. Specific genes, single nucleotide polymorphisms or gene mutations, such as deletions, insertions, and indels, can be identified. Coupled with microarray, the particles, themselves or further modified, facilitate the detection of results with non-expensive devices or even naked eyes. This technology enables the detection and interpretation of molecular interactions in an efficient and cost effective way.
Abstract:
Provided are a bubble-based microvalve and a microfluidic chip using the microvalve. Also provided are methods of using the microvalve for manipulating fluid in a microfluidic channel by changing the volume and/or location of the gas in the microvalve.
Abstract:
The present invention provides a sample preparation device for extracting drug residue. It comprises a case, in which a water bath, a vortex mixer, and a homogenizer are integrated. The case also has on it an integrated control panel for controlling heating temperature of the water bath and homogenization time of the homogenizer.
Abstract:
This invention relates generally to the field of microarray reaction devices and uses thereof. In particular, the invention provides a microarray reaction device wherein a plurality of reaction spaces are formed between a first and second plurality of projections, the heights of said plurality of reaction spaces being substantially identical and controllable by a supporting structure, and the relative positions between the first and second plurality of projections being controllable by a positioning structure. Articles of manufacture comprising the microarray reaction device and methods for assaying an analyte using the microarray reaction device are also provided.