Abstract:
A method of analyzing a remotely-located object includes the step of illuminating at least a portion of a targeted object with electromagnetic radiation to induce a phase transformation in the targeted object, wherein the phase transformation produces an emitter plasma, which emits terahertz radiation. The method also includes the step of ionizing a volume of an ambient gas to produce a sensor plasma by focusing an optical probe beam in the volume and the step of detecting an optical component of resultant radiation produced from an interaction of the focused optical probe beam and the terahertz radiation in the sensor plasma. Detecting an optical component of the resultant radiation emitted by the sensor plasma facilitates detection of a characteristic fingerprint of the targeted object imposed onto the terahertz radiation produced as a result of the induced phase transformation.
Abstract:
Methods and apparatus for detecting variations in electromagnetic fields, in particular, terahertz (THz) electromagnetic fields, are provided. The methods and apparatus employ polarization detection devices and controllers to maintain or vary the polarization of modulated signals as desired. The methods and apparatus are provided to characterize electromagnetic fields by directing the electromagnetic field and a probe beam upon an electro-crystal and detecting the modulation of the resulting probe beam. Detection of the modulation of the probe beam is practiced by detecting and comparing the polarization components of the modulated probe beam. Aspects of the invention may be used to analyze or detect explosives, explosive related compounds, and pharmaceuticals, among other substances. A compact apparatus, modular optical devices for use with the apparatus, sample holders, and radiation source mounts are also disclosed.
Abstract:
A method for generating amplified terahertz radiation includes inducing a first volume of a gas to produce a seed plasma and emit pulsed seed terahertz radiation by focusing an optical seed beam in the first volume. The seed terahertz radiation is then amplified by focusing an optical gain beam to produce a gain plasma in a second volume overlapping with the pulsed seed terahertz radiation remote from the seed plasma. The method may be implemented in a system for detecting and analyzing a remotely-located object such as an explosive material, a biological agent, and a chemical agent.
Abstract:
A method for generating terahertz radiation includes inducing a background plasma in a volume of a gas by focusing a first optical beam in the volume, and generating pulsed terahertz radiation with enhanced generation efficiency by focusing a second time-delayed optical beam in the background plasma. The method may be implemented in a system for detecting and analyzing a remotely-located object.
Abstract:
A device for use with a source of radiation to provide a THz emission image representing a sample. The device comprises a substrate, a metallic probe having a tip adjacent to the substrate surface and a source of AC bias coupled between the probe tip and substrate. Radiation generated by the source of radiation is incident on the substrate surface in the vicinity of the probe tip and generates THz emission based at least on the AC bias coupled between the probe tip and substrate. A method for providing a THz emission image representing a sample is also provided.
Abstract:
A device for use with a source of radiation to provide a THz emission image representing a sample. The device comprises a substrate, a metallic probe having a tip adjacent to the substrate surface and a source of AC bias coupled between the probe tip and substrate. Radiation generated by the source of radiation is incident on the substrate surface in the vicinity of the probe tip and generates THz emission based at least on the AC bias coupled between the probe tip and substrate. A method for providing a THz emission image representing a sample is also provided.
Abstract:
An ultrafast all-optical nonlinear switch. The switch has as components a substrate and a material disposed on the substrate. In one embodiment, the material includes a plurality of single-walled carbon nanotubes and a polymer forming a composite. Preferably, the polymer is polyimide. In another embodiment, the material includes a plurality of single-walled carbon nanotubes incorporated into a silica. The nanotube loading in the material is less than about 0.1 wt %. The material is a substantially transparent, third-order nonlinear optical material. The switch has a switching speed of less than 1 picosecond for light with a wavelength of about 1.55 micrometers. Also disclosed is a process for preparing the ultrafast all-optical nonlinear switch.
Abstract:
A method of improving spatial resolution of a pump-probe terahertz (THz) imaging system for producing an image of an object. The method provides a chopped optical gating beam focused on a semiconductive layer that is either part of the object or a discrete layer placed over the object. The gating beam is focused on a gating pulse focal spot having a diameter effective to cause measurable modulation in transmission of a THz beam through the semiconductive layer when the gating pulse is on as compared to when the gating pulse is off, creating alternating modulated THz beams for detection and processing. Systems for performing the method in transmission and reflection modes are also described.
Abstract:
A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.
Abstract:
The present application discloses a backlight module and a display device. The backlight module includes a substrate, a plurality of LED chips, and a sealant layer. The plurality of LED chips are arranged on the substrate at intervals, and the sealant layer is arranged on the substrate and covers the plurality of LED chips; the sealant layer is provided with a plurality of recesses on a side away from the LED chips, and the plurality of recesses is arranged above the plurality of LED chips in a one-to-one correspondence to the plurality of LED chips, so that light directly above the LED chips is opened to surroundings, and side light emission of the LED chips is increased, thereby increasing brightness of an area between adjacent ones of the LED chips, thus reducing a probability of dark shadows occurring.