Abstract:
A MEMS mirror for a laser printing application includes providing a CMOS substrate including a pair of electrodes, and providing a reflecting mirror moveable over the substrate and the electrodes. Voltages applied to the electrodes create an electrostatic force causing an end of the mirror to be attracted to the substrate. A precise position of the mirror can be detected and controlled by sensing a change in capacitance between the mirror ends and the underlying electrodes.
Abstract:
An optical deflection device for a display application includes a semiconductor substrate comprising an upper surface region defining an upper surface plane. The optical deflection device also includes one or more electrode devices provided overlying the upper surface region and a hinge device including a silicon material and coupled to the upper surface region at a predetermined height above the upper surface plane. The optical deflection device further comprises a plurality of landing pads including a silicon material and coupled to the upper surface region at the predetermined height from the upper surface plane and a mirror structure. The mirror structure includes a post portion coupled to the hinge device and a mirror plate portion coupled to the post portion.
Abstract:
A molding method of blow-molding a hollow tank body with a built-in component is provided. The method molds the hollow tank body by molding the sheet parisons in the half molds. After the moving cooperation of the half molds, an expanding mechanism of a pre-molding template device, the template half plates and the bases, the half molds are respectively leaned against the closed template half plates, and the sheet parisons are leaned against the half molds by blowing and/or sucking so as to be pre-molded. The tank body is molded after placing the component into it. A pre-molding template device is also provided. An expanding mechanism and the template half plates are mounted on the bases, and the bases are mounted on a rail bracket, the bases are driven by a power device to move on the rail bracket.
Abstract:
Micro-electromechanical acoustic resonators include a substrate having a cavity therein and a resonator body suspended over the cavity. The resonator body is anchored on opposing sides thereof (by support beams) to first and second portions of the substrate. These first and second portions of the substrate, which extend over the cavity as first and second ledges, respectively, each have at least one perforation therein disposed over the cavity. These perforations may be open or filled. The first and second ledges are formed of a first material (e.g., silicon) and the first and second ledges are filled with a second material having a relatively high acoustic impedance relative to the first material. This second material may include a material selected from a group consisting of tungsten (W), copper (Cu), molybdenum (Mo).
Abstract:
A User Equipment Apparatus is described, which include a Load Factor Determining Device and a Calculating Device. The Load Factor Determining Device is adapted for determining at least one load factor value of a neighbour sector. The Calculating Device is adapted for calculating a transmit power of the User Equipment Apparatus such that the at least one load factor value of a sector is considered.
Abstract:
A MEMS mirror for a laser printing application includes providing a CMOS substrate including a pair of electrodes, and providing a reflecting mirror moveable over the substrate and the electrodes. Voltages applied to the electrodes create an electrostatic force causing an end of the mirror to be attracted to the substrate. A precise position of the mirror can be detected and controlled by sensing a change in capacitance between the mirror ends and the underlying electrodes.
Abstract:
Micro-electromechanical devices include a temperature-compensation capacitor and a thin-film bulk acoustic resonator having a first terminal electrically coupled to an electrode of the temperature-compensation capacitor. The temperature-compensation capacitor includes a bimorph beam having a first electrode thereon and a second electrode extending opposite the first electrode. This bimorph beam is configured to yield an increase in spacing between the first and second electrodes in response to an increase in temperature of the micro-electromechanical device. This increase in spacing between the first and second electrodes leads to a decrease in capacitance of the temperature-compensation capacitor. Advantageously, this decrease in capacitance can be used to counteract a negative temperature coefficient of frequency associated with the thin-film bulk acoustic resonator, and thereby render the resonant frequency of the micro-electromechanical device more stable in response to temperature fluctuations.
Abstract:
Systems and methods for removing residual charge from a processed wafer are described. Removal of residual charge eliminates de-chucking failure that may break or damage the wafer. Residual charge is removed by applying a reverse polarity discharging DC voltage to an electrode embedded in an electrostatic chuck (ESC) supporting the wafer, and providing an outlet to the residual charge to ground via a lift pin assembly. Lift pin assembly is kept at the same potential with respect to a pedestal of the ESC to avoid sparking during the application of RF power to generate plasma. A residual charge sensor is included to sense and measure the amount of residual charge, so that the parameters of the reverse polarity discharging voltage can be adjusted in a subsequent de-chucking operation.
Abstract:
A method for forming an optical deflection device includes providing a semiconductor substrate comprising an upper surface region and a plurality of drive devices within one or more portions of the semiconductor substrate. The upper surface region includes one or more patterned structure regions and at least one open region to expose a portion of the upper surface region to form a resulting surface region. The method also includes forming a planarizing material overlying the resulting surface region to fill the at least one open region and cause formation of an upper planarized layer using the fill material. The method further includes forming a thickness of silicon material at a temperature of less than 300° C. to maintain a state of the planarizing material.
Abstract:
An apparatus comprising a sensor assisted video encoder (SaVE) configured to estimate global motion in a video sequence using sensor data, at least one sensor coupled to the SaVE and configured to generate the sensor data, and a camera equipped device coupled to the SaVE and the sensor and configured to capture the video sequence, wherein the SaVE estimates local motion in the video sequence based on the estimated global motion to reduce encoding time. Also included is a method comprising obtaining a video sequence, obtaining sensor data synchronized with the video sequence, converting the sensor data into global motion predictors, using the global motion predictors to reduce the search range for local motion estimation, and using a search algorithm for local motion estimation based on the reduced search range.