Abstract:
Micro-electromechanical acoustic resonators include a substrate having a cavity therein and a resonator body suspended over the cavity. The resonator body is anchored on opposing sides thereof (by support beams) to first and second portions of the substrate. These first and second portions of the substrate, which extend over the cavity as first and second ledges, respectively, each have at least one perforation therein disposed over the cavity. These perforations may be open or filled. The first and second ledges are formed of a first material (e.g., silicon) and the first and second ledges are filled with a second material having a relatively high acoustic impedance relative to the first material. This second material may include a material selected from a group consisting of tungsten (W), copper (Cu), molybdenum (Mo).
Abstract:
Micro-electromechanical devices include a temperature-compensation capacitor and a thin-film bulk acoustic resonator having a first terminal electrically coupled to an electrode of the temperature-compensation capacitor. The temperature-compensation capacitor includes a bimorph beam having a first electrode thereon and a second electrode extending opposite the first electrode. This bimorph beam is configured to yield an increase in spacing between the first and second electrodes in response to an increase in temperature of the micro-electromechanical device. This increase in spacing between the first and second electrodes leads to a decrease in capacitance of the temperature-compensation capacitor. Advantageously, this decrease in capacitance can be used to counteract a negative temperature coefficient of frequency associated with the thin-film bulk acoustic resonator, and thereby render the resonant frequency of the micro-electromechanical device more stable in response to temperature fluctuations.
Abstract:
A microelectromechanical resonator includes a resonator body, which is encapsulated within a sealed cavity extending between first and second substrates that are bonded together. The resonator body is anchored to the first substrate by at least a pair of tethers that suspend the resonator body opposite an underlying recess in the first substrate. A resistive heating element is provided, which is configured to indirectly heat the resonator body through convective heating of the cavity. This resistive heating element may be disposed on an inner surface of the second substrate that is exposed to the cavity. The resonator may also include first and second electrical interconnects, which extend through the second substrate and contact respective first and second portions of the resistive heating element.
Abstract:
Micro-electromechanical acoustic resonators include a resonator body suspended over a substrate. The resonator body may have a single perforation therein, which may extend substantially or completely therethrough. The resonator body may also be configured to have a center-of-mass within an interior of the perforation and/or a nodal line that overlaps the perforation. A perimeter and depth of the single perforation can be configured to reduce a susceptibility of the acoustic resonator to process-induced variations in resonant frequency relative to an otherwise equivalent resonator that omits the single perforation. In other embodiments, the resonator body may have multiple perforations therein that extend along a nodal line of the resonator.
Abstract:
Methods of forming packaged micro-electromechanical devices include forming a first substrate having a micro-electromechanical device therein, which extends adjacent a first surface of the first substrate. A first surface of a second substrate is then bonded to the first surface of the first substrate, to thereby encapsulate the micro-electromechanical device within a space provided between the first and second substrates. Subsequent to bonding, a second surface of the second substrate is selectively etched to define at least one through-substrate opening therein, which exposes an electrode of the micro-electromechanical device. Thereafter, the through-substrate opening is filled with an electrically conductive through-substrate via.
Abstract:
Micro-electromechanical devices include a temperature-compensation capacitor and a thin-film bulk acoustic resonator having a first terminal electrically coupled to an electrode of the temperature-compensation capacitor. The temperature-compensation capacitor includes a bimorph beam having a first electrode thereon and a second electrode extending opposite the first electrode. This bimorph beam is configured to yield an increase in spacing between the first and second electrodes in response to an increase in temperature of the micro-electromechanical device. This increase in spacing between the first and second electrodes leads to a decrease in capacitance of the temperature-compensation capacitor. Advantageously, this decrease in capacitance can be used to counteract a negative temperature coefficient of frequency associated with the thin-film bulk acoustic resonator, and thereby render the resonant frequency of the micro-electromechanical device more stable in response to temperature fluctuations.
Abstract:
Thin-film bulk acoustic resonators include a resonator body (e.g., silicon body), a bottom electrode on the resonator body and a piezoelectric layer on the bottom electrode. At least one top electrode is also provided on the piezoelectric layer. In order to inhibit process-induced variations in material layer thicknesses from significantly affecting a desired resonant frequency of the resonator, the top and bottom electrodes are fabricated to have a combined thickness that is proportional to a target thickness of the piezoelectric layer extending between the top and bottom electrodes.
Abstract:
Micro-electromechanical acoustic resonators include a resonator body suspended over a substrate. The resonator body may have a single perforation therein, which may extend substantially or completely therethrough. The resonator body may also be configured to have a center-of-mass within an interior of the perforation and/or a nodal line that overlaps the perforation. A perimeter and depth of the single perforation can be configured to reduce a susceptibility of the acoustic resonator to process-induced variations in resonant frequency relative to an otherwise equivalent resonator that omits the single perforation. In other embodiments, the resonator body may have multiple perforations therein that extend along a nodal line of the resonator.
Abstract:
Methods of forming multi-chip semiconductor substrates include forming a first plurality of dicing streets in a first surface of a first semiconductor wafer having a first plurality of bonding sites thereon and forming a second plurality of dicing streets in a first surface of a second semiconductor wafer having a second plurality of bonding sites thereon. The first surfaces of the first and second semiconductor wafers are bonded together so that the first plurality of dicing streets are aligned with the second plurality of dicing streets and the first plurality of bonding sites are matingly received and permanently affixed within the second plurality of bonding sites. A plurality of bonded pairs of semiconductor chips are then formed by planarizing the second surface of the second semiconductor wafer until the second plurality of dicing streets are exposed.
Abstract:
CAM-based search engine devices operate to reduce the occurrence of duplicate learned entries within a CAM database when processing search and learn (SNL) instructions. A search engine device may be configured to support processing of first and second immediately consecutive and equivalent SNL instructions as a first SNL instruction and a second search and search instruction, respectively. This processing is performed in order to block an addition of a duplicate learned entry within a database in the search engine device. The search engine device may also be configured to selectively block processing of the second SNL instruction as a second search and search instruction in response to detecting the database as full when the first SNL instruction is processed.