Abstract:
The present invention relates to Δ17 desaturases, which have the ability to convert ω-6 fatty acids into their ω-3 counterparts (i.e., conversion of arachidonic acid [20:4, ARA] to eicosapentaenoic acid [20:5, EPA]). Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ17 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these Δ17 desaturases in oleaginous yeast are disclosed.
Abstract:
The present invention relates to Δ9 elongases, which have the ability to convert linoleic acid [18:2, LA] to eicosadienoic acid [20:2, EDA]. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ9 elongase along with methods of making long-chain polyunsaturated fatty acids (PUFAs) using these Δ9 elongases in plants and oleaginous yeast are disclosed.
Abstract:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 25% eicosapentaenoic acid (EPA, an ω-3 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of EPA. Production host cells are claimed, as are methods for producing EPA within said host cells.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-8 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-8 desaturases in plants and oleaginous yeast.
Abstract:
The promoter region associated with the Yarrowia lipolytica ammonium transporter (yat1) gene has been found to be particularly effective for the expression of heterologous genes in oleaginous yeast. The promoter regions of the instant invention have been shown to be advantageously inducible under oleaginous conditions (i.e., nitrogen limitation) and are useful to drive expression of genes involved in the production of ω-3 and ω-6 fatty acids.
Abstract:
A thermostable TAL enzyme was identified from the fungus Phanerochaete chrysosporium, which has high activity at temperatures of 40° C. to about 60° C. The enzyme was produced in engineered cells and used for production of para-hydroxycinnamic acid (pHCA) from tyrosine. When the pHCA production reaction was run at high temperature, the enzyme was more active and pHCA was produced more rapidly, making the reaction more efficient.
Abstract:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
Abstract:
An acyltransferase is provided, suitable for use in the manufacture of microbial oils enriched in omega fatty acids in oleaginous organisms. Specifically, the gene encoding diacylglycerol acyltransferase (DGAT2) has been isolated from Mortierella alpina. This gene encodes an enzyme that participates in the terminal step in oil biosynthesis in fungi and yeast and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids produced in oils of oleaginous organisms. Most desirably, the substrate specificity of the instant DGAT2 will be particularly useful to enable accumulation of long-chain PUFAs having chain lengths equal to or greater than C20 in oleaginous yeast, such as Yarrowia lipolytica.
Abstract:
Glycerol-3-phosphate o-acyltransferase (GPAT) participates in the first step of oil biosynthesis and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids (PUFAs) produced in oils of oleaginous organisms. The present application provides a nucleic acid fragment isolated from Mortierella alpina encoding a GPAT that is suitable for use in the manufacture of oils enriched in omega fatty acids in oleaginous organisms. Most desirably, the substrate specificity of the instant GPAT will be particularly useful to enable accumulation of long-chain PUFAs having chain lengths equal to or greater than C20 in oleaginous yeast, such as Yarrowia lipolytica.
Abstract:
Lysophosphatidic acid acyltransferase (LPAAT) participates in the second step of oil biosynthesis and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids produced in oils of oleaginous organisms. The present application provides a nucleic acid fragment (identified as “LPAAT2”) isolated from Mortierella alpina encoding a LPAAT homolog that is suitable for use in the manufacture of oils enriched in omega fatty acids in oleaginous organisms. Most desirably, the substrate specificity of the instant LPAAT2 will be particularly useful to enable accumulation of long-chain PUFAs having chain lengths equal to or greater than C20 in oleaginous yeast, such as Yarrowia lipolytica.