Abstract:
An optically powered media conversion device for performing optical to electrical conversion is disclosed. The conversion device includes at least one optical coupler for receiving at least one optical signal comprising at least one wavelength, wherein the at least one optical coupler extracts energy from the at least one optical signal, and at least one detector for extracting data from the at least one optical signal and converting the optical signal to an electrical signal using a photovoltaic process. The conversion device further includes a transmitter for converting an electrical signal to an optical signal and transmitting the optical signal to a first device.
Abstract:
A capacitive coupling system includes a plurality of conductive pads situated on a dielectric layer. A plurality of switches are connected between pairs of the conductive pads via conductive linkages. The switches are operable to selectively connect selected pairs of the conductive pads to selectively adjust capacitances between conductor pairs of an electrical connector.
Abstract:
A fiber optic tap system includes a first receiver module having an input port configured to receive an optical fiber. The first receiver module is operable to convert a received optical signal to an electrical signal. A first transmitter module is coupled to receive the electrical signal from the first receiver module and convert the received electrical signal to an optical signal. The first transmitter module has an output port for outputting the optical signal. A first tap module is coupled to receive the electrical signal from the first receiver module.
Abstract:
Fiber optic connectors and adapters may be automatically secured and released via a management system. Such automation may inhibit accidental and/or unauthorized insertion of fiber optic connectors into adapter ports. The automation also may inhibit accidental and/or unauthorized removal of the fiber optic connectors from the adapter ports.
Abstract:
One exemplary embodiment is directed to an inter-networking device that performs at least one inter-networking function using physical layer information about the network of which the device is a part. Another exemplary embodiment is directed to capturing physical layer information about physical communication media that is attached to an inter-networking device. Another exemplary embodiment is directed to a technique for generating a spanning tree and/or forwarding database information for a plurality of switches in a network at a central location. The spanning tree and/or forwarding database information is generated at the central location using information including physical layer information about devices and physical communication media in the network. Another exemplary embodiment is directed to an ETHERNET physical layer device having integrated support for capturing physical layer information about the physical communication media connected to the ETHERNET physical layer device.
Abstract:
A pluggable active optical module (AOM) having an electrical connector at a first end and one or more optical adapters at a second end is disclosed. The AOM includes a storage device interface at the second end, and a programmable processor coupled to the storage device interface and one or more first contacts of the electrical connector. The programmable processor is configured to access a storage device in one or more optical fibers through the storage device interface and provide physical layer management (PLM) information obtained therefrom to a host device connected to the electrical connector. The AOM also includes a switch coupled between a second contact of the electrical connector and ground, the switch coupled to the programmable processor such that that programmable processor can control the switch to selectively connect a second contact of the electrical connector to ground.
Abstract:
A faceplate assembly includes a faceplate member; at least one jack module mounted in an opening of the faceplate member; and a printed circuit board assembly. The printed circuit board assembly includes a printed circuit board; a first set of secondary contacts that are electrically connected to the printed circuit board; and a network connector that is electrically connected to the secondary contacts of the first set via the printed circuit board. The secondary contacts extend into the jack module. The secondary contacts are isolated from primary contacts of the jack module.
Abstract:
Fiber optic connectors and adapters may be automatically secured and released via a management system. Such automation may inhibit accidental and/or unauthorized insertion of fiber optic connectors into adapter ports. The automation also may inhibit accidental and/or unauthorized removal of the fiber optic connectors from the adapter ports.
Abstract:
First and second active optical modules that terminate first and second active optical cable segments, each of which having a respective active end and a respective passive end, can be authenticated by: reading information from active-end storage devices attached to the respective active ends of the first and second active optical modules; providing information read from the active-end storage devices to an aggregation point; reading information from passive-end storage devices attached to the respective passive ends of the first and second active optical cable segments; providing information read from passive-end storage devices to the aggregation point; and authenticating the first and second active optical modules using information provided to the aggregation point.
Abstract:
Fiber optic connectors and adapters may be automatically secured and released via a management system. Such automation may inhibit accidental and/or unauthorized insertion of fiber optic connectors into adapter ports. The automation also may inhibit accidental and/or unauthorized removal of the fiber optic connectors from the adapter ports.