Abstract:
A haptic response element is contemplated. The haptic response element may generate a tactile feeling as an output and is associated with a computing device. The tactile feeling may be created by moving a part of the haptic response element. A gel may act to return the moving part of the haptic response element to a starting or zero point. Motion of the moving part may exert a shear force on the gel, rather than a compressive force.
Abstract:
A keyswitch mechanism having reduced key rattle and a keyboard having reduced key rattle. A rattle suppression mechanism may be formed on a portion of the scissor mechanism or on a portion of the keycap. The rattle suppression mechanism is configured to maintain force on the portion of the scissor mechanism abutting the keycap.
Abstract:
A venting system for a keyboard assembly is disclosed. A keyboard assembly including a printed circuit board defining a set of apertures, and a group of switch housings coupled to the printed circuit board. Each switch housing of the group of switch housings may define a switch opening positioned above one of the set of apertures of the printed circuit board. The keyboard assembly may also include a shield defining at least one channel of a venting system formed below the printed circuit board. The at least one channel may be in fluid communication with at least one aperture, and at least one of the switch openings positioned above the at least one aperture.
Abstract:
A key mechanism including one or more butterfly hinges. Each butterfly hinge may include a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together. Additionally or alternatively, a key mechanism can include one or more half-butterfly hinges. Each half-butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. A hinged coupling mechanism couples one set of corresponding arms of the wings together, while the other set of corresponding arms are not coupled together.
Abstract:
A polarized electromagnetic actuator includes a movable armature, a stator, and at least one coil wrapped around the stator. At least one permanent magnet is disposed over the stator. When a current is applied to the at least one coil, the at least one coil is configured to reduce a magnetic flux of at least one permanent magnet in one direction and increase a magnetic flux of at least one permanent magnet in another direction. The movable armature moves in the direction of the increased magnetic flux.
Abstract:
A dome switch utilized in a keyboard assembly is disclosed. The keyboard assembly may include a printed circuit board having a first electrical connector formed in the printed circuit board, and a second electrical connector formed in the printed circuit board adjacent the first electrical connector. The keyboard assembly may also include an inner contact component contacting the second electrical connector of the printed circuit board. The inner contact component may be in electrical communication with the second electrical connector of the printed circuit board. Additionally, the keyboard assembly can include a dome switch surrounding the inner contact component. The dome switch may contact and may be in electrical communication with the first electrical connector of the printed circuit board.
Abstract:
A key supported by a scissor mechanism including interlocking scissor members assembled to mutually pivot along a pivot track. A first scissor member may include a pivot track and an up-stop track and a second scissor member may include at least a first and second extension portion positioned within the pivot track and the up-stop track respectively. When the key is depressed, the first extension portion may slide and at least partially pivot or rotate within the pivot track, and the second extension portion may slide within the up-stop track.
Abstract:
A backlit keyboard including a reflective component. The backlit keyboard may include a top case forming a top portion of an exterior surface of the keyboard. The backlit keyboard may further include a set of keys positioned within the top case and a membrane positioned below the set of keys. The backlit keyboard may further include a light guide positioned below the membrane and a light source positioned on a portion of the light guide. The light source may be configured to emit light coupled into the light guide and emit stray light not coupled into the light guide. The backlit keyboard may further include a bottom case attached to the top case and forming a bottom portion of the exterior surface of the keyboard. Additionally, the backlit keyboard may include a reflector positioned on an interior surface of the bottom case below the light guide and separated from the light guide by a gap. In some embodiments, the reflector may be configured to redirect the stray light towards the set of keys and provide structural support for the light guide.
Abstract:
A key mechanism including one or more butterfly hinges. Each butterfly hinge may include a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together. Additionally or alternatively, a key mechanism can include one or more half-butterfly hinges. Each half-butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. A hinged coupling mechanism couples one set of corresponding arms of the wings together, while the other set of corresponding arms are not coupled together.
Abstract:
A key mechanism can include one or more butterfly hinges. Each butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together.