Abstract:
The invention relates to the use of a high performance thermoplastic polymer binder material for immobilizing adsorptive materials, such as activated carbon, in gas storage devices. The use of these binders, especially polyamide binders, polytetrafluoroethylene binders, or polyvinylidene fluoride binders such as Kyblock® resin, provides for high sorbent packing density, low fouling solid structure that maximizes the volume of gas to the volume of the storage space.
Abstract:
The invention relates to novel linear, semi-crystalline fluoropolymers containing 0.5 to 25 mole percent of at least one vinyl ester monomer unit. At least 40 mole percent of the vinyl ester monomer units are present in the copolymer as single monomer units (not diads or triads or greater) between two fluoromonomer units. The invention also relates to a process for forming the fluoromonomers/vinyl ester copolymer. The fluoropolymer of the invention may be used in applications benefiting from a functional fluoropolymers including as a binder, or for use in forming hydrophilic membranes and hollow fibers.
Abstract:
The invention relates to novel linear, semi-crystalline fluoropolymers containing 0.5 to 25 mole percent of at least one vinyl ester monomer unit. At least 40 mole percent of the vinyl ester monomer units are present in the copolymer as single monomer units (not diads or triads or greater) between two fluoromonomer units. The invention also relates to a process for forming the fluoromonomers/vinyl ester copolymer. The fluoropolymer of the invention may be used in applications benefiting from a functional fluoropolymers including as a binder, or for use in forming hydrophilic membranes and hollow fibers.
Abstract:
The invention relates to sized reinforcing fibers that comprise a reinforcing fiber sized with a fluoropolymer. The fluoropolymer is functionalized and/or the reinforcing fiber is sized with a compatible functional non-fluorinated polymer that is compatible with the fluoropolymer. Functionalization of the fluoropolymer or the compatible non-fluorinated polymer provides enhanced properties, such as increased adhesion to the reinforcing fiber.
Abstract:
The invention relates to fluoropolymer composites having a fluoropolymer matrix containing a functionalized fluoropolymer composition, and reinforced with fibers. The fibers can be chopped fibers, long fibers, or a mixture thereof, and the fluoropolymer matrix preferably is based on polyvinylidene fluoride. Any type of fibers, sized or unsized may be used with the functionalized fluoropolymer matrix composition to form the fluoropolymer composite.
Abstract:
This invention discloses a method of fabricating a reticulated solid electrolyte/separator (RSES) which is suitable both as electrolyte and separator in a solid state battery. The reticulated composite is produced by casting and drying of a slurry which exhibits a high yield stress (greater than 50 dyne/cm2) and comprised of a high MW resin dissolved in a solvent (having solution viscosity of higher than 100 cp at 5% in NMP at room temperature) and dispersed nanoparticles of solid electrolyte of high specific surface areas (i.e. greater than 1 m2/g, preferable greater than 10 m2/g) including but not limited to LLZO, LSP, or LIPON or derivatives thereof. This reticulated solid electrolyte/separator exhibits superior cycling properties and high ionic conductivity, resists lithium dendrite penetration, and maintains a high dimensional stability (less than 10% shrinking) at elevated temperatures (up to 140° C.). In addition, the present disclosure relates to electrochemical cells comprising such a reticulated film composite to act as both electrolyte and separator.
Abstract:
The invention relates to the use of chopped fibers in thermoplastic composite compounds, and in particular to thermoplastic fluoropolymer compounds. The fluoropolymer matrix contains thermoplastic fluoropolymers that have been grafted with a carboxylic polar functionality, such as KYNAR ADX® polymer from Arkema. The chopped fiber—grafted fluoropolymer composite has increased tensile and flexural strength compared to fluoropolymer compounds that contain no grafted carboxylic grafted fluoropolymer.
Abstract:
This invention relates to a waterborne fluoropolymer composition useful for the fabrication of Li-ion-Battery (LIB) electrodes. The fluoropolymer composition contains an organic carbonate compound, which is more environmentally friendly than other fugitive adhesion promoters currently used in waterborne fluoropolymer binders. An especially useful organic carbonate compound is ethylene carbonate (EC) and vinylene carbonate (VC), which are solids at room temperature, and other carbonates which are liquid at room temperature such as propylene carbonate, methyl carbonate and ethyl carbonate. The composition of the invention is low cost, environmentally friendly, safer, and has enhanced performance compared to current compositions.
Abstract:
The invention relates to a porous separation article having a fluoropolymer or polyamide binder interconnecting one or more types of interactive powdery materials or fibers. The interconnectivity is such that the binder connects the powdery materials or fibers in discrete spots rather than as a complete coating, allowing the materials or fibers to be in direct contact with, and interact with a fluid. The resulting article is a formed multicomponent, interconnected web, with porosity. The separation article is useful in water purification, as well as in the separation of dissolved or suspended materials in both aqueous and non-aqueous systems in industrial uses. The separation article can function at ambient temperature, as well as at elevated temperatures.
Abstract:
A novel aqueous polymerization process for making fluoropolymer dispersions is disclosed in which non-ionic non-fluorinated emulsifier is used to produce fluoropolymer emulsions. The emulsifiers used in the invention are those that contain segments of polyethylene glycol, polypropylene glycol, and/or polytetamethylene glycol with repeating units of 3 to 100. The process and fluoropolymer produced contain no fluorinated surfactant.