Abstract:
Concepts and technologies are disclosed herein for message flow management for virtual networks. A processor can identify a target virtual network function instance that is to be taken offline. The processor can change a status associated with the target virtual network function instance to indicate it being taken offline. The processor can start a graceful shutdown timer to trigger shutdown of the target virtual network function instance. The processor can identify external interfaces and a peer network function that identifies the target virtual network function instance as a next hop. The processor can obtain, for the target virtual network function instance and the peer network function instance, a snapshot that identifies configuration data for the target virtual network function instance and the peer network function instance and can generate a command to trigger a shutdown of the target virtual network function instance.
Abstract:
A mechanism controls global synchronization, or registration floods, that may result when a large number of endpoints in a Voice over Internet Protocol (VoIP) network such as an Internet Protocol Multimedia Subsystem (IMS) come online simultaneously after a catastrophic failure. The mechanism allows the Domain Name System (DNS) infrastructure to efficiently control the overload condition by registering user end points with backup border elements, and by staggering and by randomizing the time-to-live (TTL) parameter in registrations with backup border elements.
Abstract:
A method and apparatus for controlling a call volume for an office that serves as a protecting site for another office in a packet network are disclosed. For example, the method collects one or more customer registration counts from one or more session border controllers located in a first office, determines if the one or more customer registration counts have reached or exceeded a threshold. The method directs all of said one or more session border controllers located in said first office to enact one or more throttling rules if the one or more customer registration counts have reached or exceeded the threshold.
Abstract:
Concepts and technologies are disclosed herein for providing a network virtualization policy management system. An event relating to a service can be detected, and virtual machines and virtual network functions that provide the service can be identified. A first policy that defines allocation of hardware resources to host the virtual machines and the virtual network functions can be obtained, as can a second policy that defines deployment of the virtual machines and the virtual network functions to the hardware resources. The hardware resources can be allocated based upon the first policy and the virtual machines and the virtual network functions can be deployed to the hardware resources based upon the second policy.
Abstract:
Aspects of the subject disclosure may include, for example, a system that detects a request to reattach to a communication network to update a registration between a wireless communication system and the communication network while the wireless communication system is connected to a session border controller of the communication network. The system delays a release of bearer communications with the communication network responsive to the request to reattach to the communication network not being urgent. Other embodiments are disclosed.
Abstract:
Concepts and technologies are disclosed herein for providing a network virtualization policy management system. An event relating to a service can be detected, and virtual machines and virtual network functions that provide the service can be identified. A first policy that defines allocation of hardware resources to host the virtual machines and the virtual network functions can be obtained, as can a second policy that defines deployment of the virtual machines and the virtual network functions to the hardware resources. The hardware resources can be allocated based upon the first policy and the virtual machines and the virtual network functions can be deployed to the hardware resources based upon the second policy.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a server having a controller to adjust a call processing logic for Session Initiated Protocol to Integrated Services Digital Network User Part (ISUP) calls based at least in part on interworking profiles assigned to ISUP trunk groups supporting the calls. Additional embodiments are disclosed.
Abstract:
A method for vNF chaining management includes receiving virtualized network function (vNF) information from a chaining client associated with a particular vNF. A service chaining catalog is updated based on the vNF information and chaining information is transmitted to peering vNFs of the particular vNF. The vNF information can indicate instantiation of a vNF and identify peering vNFs. Updates received from vNFs can be used to update the chaining catalog. Updated vNF information can then be sent to peering vNFs of the vNF which sent the update.
Abstract:
A mechanism controls global synchronization, or registration floods, that may result when a large number of endpoints in a Voice over Internet Protocol (VoIP) network such as an Internet Protocol Multimedia Subsystem (IMS) come online simultaneously after a catastrophic failure. The mechanism allows the Domain Name System (DNS) infrastructure to efficiently control the overload condition by registering user end points with backup border elements, and by staggering and by randomizing the time-to-live (TTL) parameter in registrations with backup border elements.
Abstract:
An example method stores a nomadic service designator and an operating mode designator in association with a public user identifier. The nomadic service designator indicates whether an IP device is allowed to access VoIP services from different network locations. The public user identifier facilitates establishing a call with the IP device. The operating mode designator indicates when the IP device is in a suspended operating mode and an unrestricted mode. The suspended operating mode restricts the IP device to a subset of communication services associated with a service subscription of the IP device, and to a 911 service. The unrestricted operating mode is based on a registered geographic location associated with the IP device being a current geographic location of the IP device, and is based on a service provider being able to provide an E911 service including a location-identification service at the current geographic location of the IP device.