Abstract:
The present invention is directed to polymeric materials comprising biodegradable, dioxanone-based copolymers and implantable devices (e.g., drug-delivery stents) formed of such materials. The polymeric materials can also contain at least one additional biocompatible moiety, at least one non-fouling moiety, at least one biobeneficial material, at least one bioactive agent, or a combination thereof. The polymeric materials are designed to improve the mechanical, physical and biological properties of implantable devices formed thereof.
Abstract:
A composition for loading into a structural element of a stent, where the structural element is defined by a lumen and at least one opening to access the lumen. The composition may comprise a therapeutic agent, and a chelator, a precipitation agent, or a combination thereof. Medical devices, such as stents, with a structural element defined by a lumen and at least one opening to access the lumen, filled with the compositions are also described.
Abstract:
Methods are disclosed for conditioning a polymeric stent after sterilization, and/or after crimping and before packaging, such that the properties of the polymeric stent fall within a narrower range of values. The stent is exposed to a controlled temperature at or above ambient for a period of time after radiation sterilization and/or after crimping and before sterilization. As a result, the polymeric stent properties, particularly radial strength and number-average molecular weight of the polymer of the polymeric stent, fall within a narrower range.
Abstract:
Method are disclosed for local and systemic administration HDL, recombinant HDL or HDLm for the prevention, treatment, or amelioration of a vascular disorder, disease or occlusion such as restenosis or vulnerable plaque.
Abstract:
Methods of making polymeric devices, such as stents, using solvent based processes. More particularly, methods of making bioabsorbable stents.
Abstract:
A polymer comprising phospholipid moieties and a biocompatible polymer backbone, a composition comprising the polymer and optionally a bioactive agent, an implantable devices such as a DES comprising thereon a coating comprising the polymer and optionally a bioactive agent, and a method of using the device for the treatment of a disorder in a human being are provided.
Abstract:
A block copolymer comprises an A block and a B block. The A block provides mechanical strength while the B block provides elasticity to the polymeric material. The block copolymer may be an ABA tri-block copolymer. The A block may include one or more of polyglycolide (PGA), polylactic acid (PLA), or copolymer thereof. The B block may include a random copolymer of (i) glycolide (GA) and/or lactide (LA), (ii) trimethylene carbonate (TMC), and (iii) ε-caprolactone (CL). The block copolymer may cover an implantable device which may be used in delivering immediate hemostasis at a puncture site in a wall of a blood vessel.