摘要:
Substrate having a first partial substrate with a carrier layer and a second partial substrate, which is bonded to the first partial substrate. The second partial substrate has an insulator layer, which is applied on the carrier layer and has at least two regions each having a different thickness, thereby forming a stepped surface of the insulator layer, and a semiconductor layer, which is applied to the stepped surface of the insulator layer and is formed at least partially epitaxially, wherein the semiconductor layer has a planar surface which is opposite to the stepped surface of the insulator layer. Transistors are formed on the semiconductor layer.
摘要:
The present invention provides a FinFET transistor arrangement produced using a method with the steps: providing a substrate (106, 108); forming an active region (1) on the substrate a fin-like channel region (113b′; 113b″). Formation of the fin-like channel region (113b′; 113b″) has the following steps: forming a hard mask (S1-S4) on the active region (1); anisotropic etching of the active region (1) using the hard mask (S1-S4) forming STI trenches (G1-G5) having an STI oxide filling (9); polishing-back of the STI oxide filling (9); etching-back of the polished-back STI oxide filling (9); selective removal of components of the hard mask forming a modified hard mask (S1′-S4′); anisotropic etching of the active region (1) using the modified hard mask (S1′-S4′) forming widened STI trenches (G1′-G5′), the fin-like channel regions (113b′; 113b″) of the active region (1) remaining for each individual FinFET transistor.
摘要:
A semiconductor memory component comprises at least one memory cell. The memory cell comprises a semiconductor body comprised of a body region, a drain region and a source region, a gate dielectric, and a gate electrode. The body region comprises a first conductivity type and a depression between the source and drain regions, and the source and drain regions comprise a second conductivity type. The gate electrode is arranged at least partly in the depression and is insulated from the body, source, and drain regions by the gate dielectric. The body region further comprises a first continuous region with a first dopant concentration and a second continuous region with a second dopant concentration greater than the first dopant concentration. The first continuous region adjoins the drain region, the depression and the source region, and the second region is arranged below the first region and adjoins the first region.
摘要:
Semiconductor memory having memory cells, each including first and second conductively-doped contact regions and a channel region arranged between the latter, formed in a web-like rib made of semiconductor material and arranged one behind the other in this sequence in the longitudinal direction of the rib. The rib has an essentially rectangular shape with an upper side of the rib and rib side faces lying opposite. A memory layer is configured for programming the memory cell, arranged on the upper side of the rib spaced apart by a first insulator layer, and projects in the normal direction of the one rib side face over one of the rib side faces so that the one rib side face and the upper side of the rib form an edge for injecting charge carriers from the channel region into the memory layer. A gate electrode is spaced apart from the one rib side face by a second insulator layer and from the memory layer by a third insulator layer, electrically insulated from the channel region, and configured to control its electrical conductivity.
摘要:
Memory cell having an auxiliary substrate, on which a first gate insulating layer is formed, a floating gate formed on the first gate insulating layer, an electrically insulating layer formed on the floating gate, a memory gate electrode formed on the electrically insulating layer, a substrate fixed to the memory gate electrode, a second gate insulating layer formed on a part of a surface of the auxiliary substrate, which surface is uncovered by partially removing the auxiliary substrate, a read gate electrode formed on the second gate insulating layer, and two source/drain regions located between a channel region essentially in and/or on a surface region of the remaining material of the auxiliary substrate that is free of the second gate insulating layer and the read gate electrode, the channel region being arranged in each case at least partly laterally overlapping the floating gate and the read gate electrode.
摘要:
Floating gate memory cell having a first layer with first and second source/drain regions and a channel region arranged between and next to the first and second source/drain regions, and a floating gate layer arranged on the first layer, wherein the first and second source/drain regions and the floating gate layer are formed of a metallically conductive material, and the channel region is formed of an electrically insulating material.
摘要:
Floating gate memory cell having a first layer with first and second source/drain regions and a channel region arranged between and next to the first and second source/drain regions, and a floating gate layer arranged on the first layer, wherein the first and second source/drain regions and the floating gate layer are formed of a metallically conductive material, and the channel region is formed of an electrically insulating material.
摘要:
An electronic device has a plurality of electrically conductive first nanowires, a layer system applied on the first nanowires, and also second nanowires applied on the layer system. The first and second nanowires are arranged skew with respect to one another. The layer system is set up in such a way that charge carriers generated by the nanowires can be stored in the layer system.
摘要:
A fin field-effect transistor has a substrate and a fin structure above the substrate, as well as a drain region and a source region outside the fin structure above the substrate. The fin structure serves as a channel between the source region and the drain region. The source and drain regions are formed once a gate has been produced.
摘要:
A fin field effect transistor having a substrate, a fin structure above the substrate, as well as a drain region and a source region outside the fin structure above the substrate. The fin structure serves as a channel between the source region and the drain region. The source and drain regions are formed once the gate has been produced.