摘要:
The present invention provides a FinFET transistor arrangement produced using a method with the steps: providing a substrate (106, 108); forming an active region (1) on the substrate a fin-like channel region (113b′; 113b″). Formation of the fin-like channel region (113b′; 113b″) has the following steps: forming a hard mask (S1-S4) on the active region (1); anisotropic etching of the active region (1) using the hard mask (S1-S4) forming STI trenches (G1-G5) having an STI oxide filling (9); polishing-back of the STI oxide filling (9); etching-back of the polished-back STI oxide filling (9); selective removal of components of the hard mask forming a modified hard mask (S1′-S4′); anisotropic etching of the active region (1) using the modified hard mask (S1′-S4′) forming widened STI trenches (G1′-G5′), the fin-like channel regions (113b′; 113b″) of the active region (1) remaining for each individual FinFET transistor.
摘要:
The invention relates to a vertical integrated component, a component arrangement and a method for production of a vertical integrated component. The vertical integrated component has a first electrical conducting layer, a mid layer, partly embodied from dielectric material on the first electrical conducting layer, a second electrical conducting layer on the mid layer and a nanostructure integrated in a through hold introduced in the mid layer. A first end section of the nanostructure is coupled to the first electrical conducting layer and a second end section is coupled to the second electrical conducting layer. The mid layer includes a third electrical conducting layer between two adjacent dielectric partial layers, the thickness of which is less than the thickness of at least one of the dielectric partial layers.
摘要:
Memory transistors are arranged in a plurality of rows and columns. A first source/drain terminal of each memory transistor of a first column is connected to an electrically conductive conductor track in a first metallization plane, and a first source/drain terminal of each memory transistor of a second column adjacent to the first column is connected to an electrically conductive conductor track in a second metallization plane.
摘要:
A fin field effect transistor memory cell having a first and a second source/drain region, a gate region, a semiconductor fin having a channel region between the first and the second source/drain region, a charge storage layer configured as a trapping layer arranged at least partly on the gate region, and a word line region on at least one part of the charge storage layer. The charge storage layer is set up such that electrical charge carriers can be selectively introduced into the charge storage layer or be removed therefrom by applying predetermined electrical potentials to the fin field effect transistor memory cell.
摘要:
Memory transistors are arranged in a plurality of rows and columns. A first source/drain terminal of each memory transistor of a first column is connected to an electrically conductive conductor track in a first metallization plane, and a first source/drain terminal of each memory transistor of a second column adjacent to the first column is connected to an electrically conductive conductor track in a second metallization plane.
摘要:
The present invention provides a production method for a FinFET transistor arrangement, and a corresponding FinFET transistor arrangement. The method comprises the following steps: provision of a substrate (106, 108); formation of an active region (1) on the substrate, said active region having a source region (114), a drain region (116) and an intervening fin-like channel region (113b′; 113b″) for each individual FinFET transistor; formation of a gate dielectric (11) and a gate region (13, 14, 15) over the fin-like channel region (113b′; 113b″) for each individual FinFET transistor; the formation of the fin-like channel region (113b′; 113b″) having the following steps: formation of a hard mask (S1-S4) on the active region (1), said hard mask having a pad oxide layer (30), an overlying pad nitride layer (50) and nitride sidewall spacers (7); anisotropic etching of the active layer (1) using the hard mask (S1-S4) for the formation of STI trenches (G1-G5); filling of the STI trenches (G1-G5) with an STI oxide filling (9); polishing-back of the STI oxide filling (9) as far as the top side of the hard mask (S1-S4); etching-back of the polished-back STI oxide filling (9) as far as a residual height (h′) in the STI trenches (G1-G5); selective removal of the pad nitride layer (50) and the nitride sidewall spacers (7) with respect to the pad oxide layer (30), the etched-back STI oxide filling (9) and the active region (1) for the formation of a modified hard mask (S1′-S4′); anisotropic etching of the active layer (1) using the modified hard mask (S1′-S4′) for the formation of widened STI trenches (G1′-G5′), the fin-like channel regions (113b′; 113b″) of the active region (1) remaining for each individual FinFET transistor.
摘要:
In an embodiment, an integrated circuit having a memory cell arrangement is provided. The memory cell arrangement may include a substrate, a fin structure disposed above the substrate, and a memory cell contacting region. The fin structure may include a memory cell region having a plurality of memory cell structures being disposed above one another, each memory cell structure having an active region of a respective memory cell. Furthermore, the memory cell contacting region may be configured to electrically contact each of the memory cell structures, wherein the memory cell contacting region may include a plurality of contact regions, which are at least partially displaced with respect to each other in a direction parallel to the main processing surface of the substrate.
摘要:
A semiconductor memory element has a substrate, in which a source region and a drain region are formed, a floating gate electrically insulated from the substrate, and a tunnel barrier arrangement, via which charging or discharging of the floating gate can be performed. It is possible to alter the conductivity of a channel between source and drain regions by charging or discharging the floating gate. A source line is electrically conductively connected to the source region and controls the charge transmission of the tunnel barrier arrangement.
摘要:
Integrated circuit array having field effect transistors (FETs) formed next to and/or above one another. The array has a substrate, a planarized first wiring plane with interconnects and first source/drain regions of the FETs, a planarized first insulator layer on the first wiring plane, a planarized gate region layer, which has patterned gate regions made of electrically conductive material and insulator material introduced therebetween, on the first insulated layer, a planarized second insulator layer on the gate region layer, holes formed through the second insulator layer, the gate regions, and the first insulator layer, a vertical nanoelement serving as a channel region in each of the holes, a second wiring plane with interconnects and second source/drain regions of the FETs, each nanoelement being arranged between the first and second wiring planes, and a gate insulating layer between the respective vertical nanoelement and the electrically conductive material of the gate regions.
摘要:
The invention relates to a semiconductor memory having a multiplicity of memory cells and a method for forming the memory cells. The semiconductor memory generally includes a semiconductor layer arranged on a substrate surface that includes a normally positioned step between a deeper region and a higher region. The semiconductor memory further includes doped contact regions, channel regions, a trapping layer arranged on a gate oxide layer, and at least one gate electrode. The method for forming the memory cells includes patterning a semiconductor layer to form a deeper semiconductor region and a higher semiconductor region having a step positioned between the regions. The method further includes forming a first oxide layer and a trapping layer, and then removing portions of the trapping layer and the first oxide layer and applying a second oxide layer at least regions of a doped region, the trapping layer, and the step area, and applying a gate electrode to the second oxide layer and doping, at least in regions, of the deeper semiconductor region and the higher semiconductor region to form a deeper contact region and a higher contact region.